	Date of Test:
	Customer:
	SLC Tester:

[image:]

PolicyGuru® Meta-Policy Controller
Functional Systems Test
(Customer name)
	

Document Revision 1.0

SecureLogix Corporation
13750 San Pedro Avenue, Suite 820
San Antonio, TX 78232
Main: (210) 402-9669
FAX: (210) 402-6992
	
Functional System Test Plan Revision History

	Date of Change
	Committed By
	Description

	
	Jane Byrne
	Rev 1.0 test plan to support change control to validate interoperability with site SBCs

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

SecureLogix Corporation Trademark and Patent Notices
ETM, We See Your Voice, SecureLogix, SecureLogix Corporation, and the SecureLogix Emblem are registered trademarks or registered trademarks and registered service marks of SecureLogix Corporation in the U.S.A. and other countries. PolicyGuru is a registered trademark of SecureLogix Corporation in the U.S.A. VOX, Orchestra One, and Call Protect are trademarks or trademarks and service marks of SecureLogix Corporation in the U.S.A. All other trademarks mentioned herein are believed to be trademarks of their respective owners.
© Copyright 2007-2019 SecureLogix Corporation. All Rights Reserved.

SecureLogix technologies are protected by one or more of the following patents: US 6,226,372 B1, US 6,249,575 B1, US 6,320,948 B1, US 6,687,353 B1, US 6,718,024 B1, US 6,760,420 B2, US 6,760,421 B2, US 7,133,511 B2, US 7,231,027 B2, US 7,440,558 B2, US 8,150,013 B2, CA 2,354,149, DE 1,415,459 B1, FR 1,415,459 B1, and GB 1,415,459 B1. U.S. Patents Pending.

Table of Contents
II.	Introduction	5
A.	Goals and Objectives	5
III.	Statement of Scope	5
A.	Test Scope	5
B.	Out of Scope	5
IV.	Test Resources	5
V.	Test Schedule	6
VI.	Test Design	7
A.	PolicyGuru Solution Baseline Configuration Validation	7
B.	PolicyGuru ENUM Server Validation Testing with SBC	7
C.	PolicyGuru Meta-Data Probe Server Validation Testing	7
VII.	Test Strategy	7
A.	PolicyGuru Solution Baseline Configuration Validation	7
1.	Running State	7
2.	Enhanced Availability	7
B.	PolicyGuru ENUM Server Validation	7
1.	Receipt of ENUM Requests from SBC	7
2.	Proper Exchange and Processing of Regex Response by SBC	7
3.	SBC Routing of Calls Based on ENUM Server Status	7
C.	PolicyGuru Meta-Data Probe Server Validation	8
1.	Receipt of UDP SIP Signaling from Tap Device	8
2.	Proper Processing of Received Data	8
VIII.	Test Record Keeping	8
IX.	Criteria for Successful Test	8
X.	Deliverables	8
XI.	Appendix A: Test Procedures	8
A.	PolicyGuru Solution Baseline Configuration Validation	8
1.	Functions to be Tested	8
2.	Testing Procedure	8
B.	PolicyGuru ENUM Server Validation Testing	10
1.	Functions to be Tested	10
2.	Testing Procedure	10
C.	PolicyGuru Meta-Data Probe Server Validation	12
1.	Functions to be Tested	12
2.	Testing Procedure	12
XII.	Appendix B: Test Result Forms	14
A.	Test Results – PolicyGuru Solution Baseline Configuration Validation	14
1.	Primary PolicyGuru Mediation Server	14
2.	Primary PolicyGuru Database Server	15
3.	Site 1 PolicyGuru ENUM Server 1	16
4.	Site 1 PolicyGuru ENUM Server 2	16
5.	Site 1 PolicyGuru Meta-Data Probe Server 1	17
6.	Site 1 PolicyGuru Meta-Data Probe Server 2	17
7.	Secondary PolicyGuru Mediation Server	18
8.	Secondary PolicyGuru Database Server	19
9.	Site 2 PolicyGuru ENUM Server 1	19
10.	Site 2 PolicyGuru ENUM Server 2	20
11.	Site 2 PolicyGuru Meta-Data Probe Server 1	21
12.	Site 2 PolicyGuru Meta-Data Probe Server 2	21
B.	Test Results – PolicyGuru ENUM Server Validation Testing	22
1.	Site 1 PolicyGuru ENUM Server 1	22
2.	Site 1 PolicyGuru ENUM Server 2	24
3.	Site 2 PolicyGuru ENUM Server 1	26
4.	Site 2 PolicyGuru ENUM Server 2	28
C.	Test Results – PolicyGuru Meta-Data Probe Server Validation	30
1.	Site 1 PolicyGuru Meta-Data Probe Server 1	30
2.	Site 2 PolicyGuru Meta-Data Probe Server 2	31
3.	Site 2 PolicyGuru Meta-Data Probe Server 1	32
4.	Site 2 PolicyGuru Meta-Data Probe Server 2	34
XIII.	Appendix C: Final Acceptance	36

[bookmark: _Toc7442396]Introduction
[bookmark: _Toc323806270][bookmark: _Toc7442397]Goals and Objectives
This document defines the Functional System Test (FST) to validate interoperability with the Customer’s SBC(s) and receipt of data from the Customer’s voice tap device(s) at the locations listed in Table 1. At the conclusion of this event, the PolicyGuru Solution will be validated as functional, thus completing the installation phase of the project and marking the transition to the Managed Service.

	Location
	Deployed PolicyGuru Solution Items

	
	

	
	

Table 1

[bookmark: _Toc323806271][bookmark: _Toc7442398]Statement of Scope
[bookmark: _Toc7442399]Test Scope
The focus of this Functional System Test (FST) is to validate PolicyGuru Solution installation tasks were completed successfully and the deployed system correctly interacts with the Customer’s SBC(s) and receives requested data from Customer’s voice tap device(s) in locations in Table 1.

[bookmark: _Toc7442400]Out of Scope
The testing of the deployed production PolicyGuru Solution with the Customer’s SBC(s) and voice tap device(s) will occur within a single change control event. This FST is specific to that effort. Any task not specifically described within this document, including all preceding and post change work to be performed by the Customer or their agents, are considered out of scope of this change.

It is assumed requested access and communications to/from the deployed PolicyGuru Solution has been validated prior to execution of this FST.

[bookmark: _Toc7442401][bookmark: _Toc323806276]Test Resources
Table 2 describes the Roles, Responsibilities, and Resource Name for the testing tasks described in this FST.

	Role
	Responsibilities
	Resource Name(s)

	SecureLogix
	· Schedule resources to execute this FST.
· Prepare systems in anticipation of the change control.
· Once in the change control window, execute the Implementation Plan.
· Execute this FST.
· Find, report, and resolve any findings.
· Re-test as required.
· Record final results.
· Provide copy of test plan with results to the Customer.
	

	(Customer)

	· Gain approvals and change controls to proceed with testing.
· Notify SecureLogix of all Customer-required test steps.
· Provide test phone numbers, that when dialed from a phone outside the Customer’s network, will generate an ENUM request from each site’s SBC to the SecureLogix PolicyGuru ENUM servers.
· Provide minimum of two (2) internal destination extensions per site for the inbound test calls. One will be the destination for a rerouted call and the other as the destination of a terminated call.
· Coordinate and verify Customer’s Voice Engineer will be available and ready to apply the appropriate configuration to the SBCs and troubleshoot as required during testing.
· Coordinate and verify Customer’s Voice Engineer will be available and ready to apply the appropriate configuration to the voice tap device and troubleshoot as required during testing.
· (Optional) Witness vendor test plan.
· Receive completed test plan with results.
	

Table 2

[bookmark: _Toc7442402]Test Schedule
Table 3 describes the schedule for the FST.
	Task
	Artifacts
	Projected Completion

	SecureLogix Implementation Plan Completed
	PolicyGuru Implementation Plan v1.0
	

	SecureLogix FST Plan Completed
	PolicyGuru Solution Functional Test Plan v 1.0
	

	Execute Implementation Plan
	PolicyGuru Implementation Plan v1.0
	

	Execute FST
	FST Version 1.0, Appendix A
	

	(Optional) Customer Witnessed Test
	FST Version 1.0, Appendix B
	

	Final Copy of FST with Documented Results Submitted to Customer
	FST Version 1.0
	

Table 3

[bookmark: _Toc527912666]
[bookmark: _Toc7442403]Test Design
[bookmark: _Toc7442404][bookmark: _Toc503995716][bookmark: _Toc527912669][bookmark: _Toc503995701][bookmark: _Toc527912668]PolicyGuru Solution Baseline Configuration Validation
[bookmark: _Toc7442405]PolicyGuru ENUM Server Validation Testing with SBC
[bookmark: _Toc7442406]PolicyGuru Meta-Data Probe Server Validation Testing

[bookmark: _Toc527912670][bookmark: _Toc7442407]Test Strategy
The tester(s) will execute the following test procedures. The assumption is the tester is familiar with the PolicyGuru Solution implementation and does not require step-by-step instructions to execute a test objective.
The test procedures are located in Appendix A.

[bookmark: _Toc7442408][bookmark: _Toc527912682][bookmark: _Toc527912679]PolicyGuru Solution Baseline Configuration Validation
[bookmark: _Toc7442409]Running State
[bookmark: _Toc7442410]Enhanced Availability

[bookmark: _Toc7442411]PolicyGuru ENUM Server Validation
[bookmark: _Toc527912683][bookmark: _Toc7442412]Receipt of ENUM Requests from SBC
[bookmark: _Toc527912684][bookmark: _Toc7442413]Proper Exchange and Processing of Regex Response by SBC
[bookmark: _Toc527912685][bookmark: _Toc7442414]SBC Routing of Calls Based on ENUM Server Status

[bookmark: _Toc7442415]PolicyGuru Meta-Data Probe Server Validation
[bookmark: _Toc503995720][bookmark: _Toc527912680][bookmark: _Toc7442416]Receipt of UDP SIP Signaling from Tap Device
[bookmark: _Toc503995721][bookmark: _Toc527912681][bookmark: _Toc7442417]Proper Processing of Received Data
[bookmark: _Toc323806284]

[bookmark: _Toc527912686][bookmark: _Toc7442418]Test Record Keeping
Test Result Forms are found in Appendix B. Each test has a corresponding result sheet. Each result sheet must be endorsed by the vendor and Customer’s representative(s).

[bookmark: _Toc527912687][bookmark: _Toc7442419][bookmark: _Toc323806285]Criteria for Successful Test
All test cases must have a result of PASS in order to be considered a successful FST. PASS or OTHER with caveats\comments is also acceptable if the Customer agrees in writing (provided either as a note in Appendix B or via email).
If one or more FAIL results are recorded, SecureLogix shall work with the Customer to resolve issues to an acceptable level and retest relevant sections as required.

[bookmark: _Toc527912688][bookmark: _Toc7442420]Deliverables
Deliverables due to the Customer at the conclusion of this FST are as follows:
· Functional Test Plan with Appendices A and B, including full documentation of results and signatures

[bookmark: _Toc527912689][bookmark: _Toc7442421]Appendix A:	Test Procedures

[bookmark: _Toc527912690][bookmark: _Toc7442422][bookmark: _Toc323806293]PolicyGuru Solution Baseline Configuration Validation
[bookmark: _Toc527912691][bookmark: _Toc7442423]Functions to be Tested
· Running State
· Enhanced Availability mode, required for production implementation, is configured correctly and is operational

[bookmark: _Toc527912692][bookmark: _Toc7442424]Testing Procedure
Strategy

Running State
Visual inspection of the processes, the PolicyGuru running status, and interaction with the PolicyGuru Client will validate the active Mediation Server application processes are running and communicating with each other.

The Mediation Server requires communication with the Database Server in order to start. If the Mediation Server is running, by default, this verifies proper configuration of both applications.

Additional verification of the of the ENUM Sever and Meta-Data Probe Server configurations will be performed in Sections B and C in this Appendix.

PolicyGuru Enhanced Availability
The PolicyGuru Solution has been deployed in a distributed Enhanced Availability model to allow for rapid system recovery in the event of active management cluster failure. In this configuration model, the Mediation Server and Database Server in the primary location will be the active management cluster pair while the set in the second location will act as the warm-standby.

Test Steps

	Test Case
	Additional Information

	Running State

	Start the PolicyGuru applications appropriate to that server. Using the ps command, verify the PolicyGuru processes are running.
	The PolicyGuru processes appropriate to that server type will be running.

	Wait 10 minutes and verify the appropriate application processes on each server being tested are still running.
	Processes are still running.

	Wait 30 minutes and review the application log file appropriate to the server being tested to verify there are no reported errors.
	No critical errors are reported in the log.

	Comments:

	

	PolicyGuru Enhanced Availability

	Verify the scripts and settings outlined in the document “PolicyGuru® Meta-Policy Controller Enhanced Availability Guide.pdf” have been implemented.

	Enhanced Availability correctly implemented.

	Log into the warm-standby Mediation Server and Database Server. By taking note of timestamps, verify the scripts are syncing properly.
	Files and directories on the warm-standby servers are being updated.

	 Comments:

[bookmark: _Toc527912696][bookmark: _Toc7442425][bookmark: _Toc527912693]PolicyGuru ENUM Server Validation Testing
[bookmark: _Toc464768196][bookmark: _Toc527912697][bookmark: _Toc7442426]Functions to be Tested
· ENUM Requests are being received from the SBC
· The SBC and PolicyGuru Solution can correctly interpret exchanged regex expressions
· SBC properly handles call based upon received regex instruction
· SBC correctly configured to continue normal voice operations in the case of PolicyGuru solution failure state

[bookmark: _Toc464768197][bookmark: _Toc527912698][bookmark: _Toc7442427]Testing Procedure
Strategy
Receipt of ENUM Requests from SBC
Initiating test calls and verifying the SecureLogix PolicyGuru ENUM Servers receive properly formatted ENUM requests validates the following:
SBC was configured with the correct ENUM request format and with the correct SecureLogix target IPs
PolicyGuru ENUM Server platforms are properly configured for the Customer’s data network
PolicyGuru ENUM Server applications are functional and capable of receiving ENUM requests
Customer’s data network has been correctly configured.

Proper Exchange and Processing of Regex Response by SBC	
When an ENUM request is made to the PolicyGuru ENUM Server application, the provided response is in the form of a regex statement. Verifying the SBC manages the call properly proves:
The PolicyGuru application is properly configured to allow a user to create a rule that formats regex responses for the SBC
The SBC is properly configured to receive and interpret the regex responses from the PolicyGuru application
The SBC are correctly configured to process the call as it was directed to

SBC Routing of Calls Based on ENUM Server Status
SBC configuration includes various routing tables that control how calls are directed within the Customer’s voice network. This testing ensures that calls are routed as expected with the introduction of the PolicyGuru ENUM Server.

Test Steps

	
Test Case
	Additional Information

	Receipt of ENUM Requests from SBC

	Using the Analytics screen within the PolicyGuru Client while making test calls:
	The PolicyGuru ENUM Servers should receive ENUM requests when test call traffic is generated.

	Using the presented fields, verify data is being received from each ENUM Server by selecting to display:
· ENUM from Dataset
· Average CPS from View
· Hour from Grouping
· Display each Device, one at a time, from Device
	Data is correctly formatted and displayed in the expected format.

	Using the presented fields, verify the Mediation Server can properly determine which are source phone numbers within the data received from the ENUM Servers, and that the phone numbers are presented in a normalized format, by selecting to display:
· ENUM from Dataset
· Top 10 Source from View
· Hour from Grouping
· All from Device
	Call direction is properly determined and source phone numbers are properly displayed.

	Using the presented fields, verify the Mediation Server can properly determine which are destination phone numbers within the data received from the ENUM Servers, and that the phone numbers are presented in a normalized format, by selecting to display:
· SIP from Dataset
· Top 10 Destination from View
· Hour from Grouping
· All from Device
	Call direction is properly determined and destination phone numbers are properly displayed.

	 Comments:

	
	

	
Proper Exchange and Processing of Regex Responses by SBC

	Configure and install a policy rule that allows a specific test call to proceed.
	Call will proceed to destination in a normal fashion.

	Configure and install a policy rule that causes a specific test call to be terminated.
	Call will not go to the dialed destination. It will be “terminated” from the caller’s perspective.

	Configure and install a policy rule that allows a specific test call to proceed.
	Call will proceed to destination in a normal fashion.

	Uninstall all test policies.
	Policies are successfully uninstalled.

	Generate a test call using phone numbers associated with terminate and redirect policies to verify they are no longer being acted upon.
	Calls are allowed validating policy was successfully uninstalled.

	Comments:

	

	SBC Routing of Calls Based on ENUM Server Status

	SSH into each ENUM Server under test and initiate a TCP dump on the ETH2 interface.
	TCP dump successfully initiated.

	By observation of traffic received on the ETH2 interface, verify ENUM requests from the SBC are distributed in a round-robin fashion.
	The SBC is properly configured to send ENUM requests in a round-robin fashion (e.g. call #1 goes to ENUM 1, call #2 goes to ENUM 2, call #3 goes to ENUM 3, call #4 goes to ENUM 1, call #5 goes to ENUM 2, etc.)

	Disable the ENUM Server services on ENUM 1. Verify all ENUM requests are sent to ENUM 2 and ENUM 3.
	The SBC is properly configured to send all ENUM requests to ENUM 2 and ENUM 3 once it recognizes ENUM 1 is unavailable. All calls are processed normally.

	Disable the ENUM Server services on ENUM 1 and ENUM 2. Verify all ENUM requests are sent to ENUM 3.
	The SBC is properly configured to send all ENUM requests to ENUM 3 once it recognizes ENUM 1 and ENUM 2 are unavailable. All calls are processed normally.

	Re-enable the services on ENUM 1 and ENUM 2 servers. Verify the SBC recognizes they are back online and sends ENUM requests to all servers after the defined timeout expires.
	The SBC is properly configured to place ENUM 1 and ENUM 2 servers on a blacklist for a specific period of time. Once that time expires, it will again send ENUM requests to ENUM 1 and ENUM 2.

	Disable the ENUM Server services on all ENUM Servers for the site. Verify all calls proceed normally.
	The SBC is properly configured to detect the ENUM Servers are unavailable and will route calls to the next hop in the Customer’s network in a normal fashion.

	Re-enable the services on all ENUM Servers at the site. Verify ENUM requests are again received in a round-robin fashion.
	The SBC properly detects the ENUM Servers are again available and returns to the normal operation of a round-robin distribution of requests.

	Comments:

[bookmark: _Toc7442428]PolicyGuru Meta-Data Probe Server Validation
[bookmark: _Toc503995739][bookmark: _Toc527912694][bookmark: _Toc7442429]Functions to be Tested
· Call data is received from connected span ports.
· The Meta-Data Probes are properly configured to receive and interpret the provided UDP SIP signaling and RTP streams.
[bookmark: _Toc503995740]
[bookmark: _Toc527912695][bookmark: _Toc7442430]Testing Procedure
Strategy
Receipt of UDP SIP Signaling and RTP from Tap Device
UDP formatted SIP signaling and RTP data feed must be received from the tap device connected to each Meta-Data Probe server.
Proper Processing of Received Data
The PolicyGuru Solution properly parses and displays data received from the Meta-Data Probe Servers.

Test Steps

	Test Case
	Additional Information

	Receipt of UDP SIP Signaling and RTP from Tap Device

	From the operating system of the Meta-Data Probe under test, verify interface ports 6 and 7 are in a bonded configuration.
	Ports are bonded.

	From the operating system of the Meta-Data Probe under test, start a packet capture on the bonded interface. Verify data is being forwarded from the tap device to the Meta-Data Probe server over this interface.
	Data is being received over this interface from the span port.

	Comments:

	

	Proper Processing of Received Data

	Using the Analytics screen within the PolicyGuru Client:
	

	Using the presented fields, verify data is being received from each Meta-Data Probe by selecting to display:
· SIP from Dataset
· Average CPS from View
· Hour from Grouping
· Display each Device, one at a time, from Device
	Data is correctly formatted and displayed in the expected format.

	Using the presented fields, verify the Mediation Server can properly determine which are source phone numbers within the data received from the Meta-Data Probe servers, and that the phone numbers are presented in a normalized format, by selecting to display:
· SIP from Dataset
· Top 10 Source from View
· Hour from Grouping
· All from Device
	Call direction is properly determined and source phone numbers are properly displayed.

	Using the presented fields, verify the Mediation Server can properly determine which are destination phone numbers within the data received from the Meta-Data Probe servers, and that the phone numbers are presented in a normalized format, by selecting to display:
· SIP from Dataset
· Top 10 Destination from View
· Hour from Grouping
· All from Device
	Call direction is properly determined and destination phone numbers are properly displayed.

	Comments:

[bookmark: _Toc527912699][bookmark: _Toc7442431]Appendix B: Test Result Forms
Each page of Appendix B must be dated and signed by the SecureLogix Tester. If available, the participating Customer Witness will sign and date in the appropriate fields.

The FST has been fully executed when the following is satisfied:
· A verdict has been selected for each test below.
· Comments have been filled in where applicable.
· Exemptions and additional comments, if warranted, have been filled in.
· The tester and witness have signed the final page affirming the contents of Appendix B are acceptable and its content final.

0. [bookmark: _Toc323806294][bookmark: _Toc527912700][bookmark: _Toc7442432]Test Results – PolicyGuru Solution Baseline Configuration Validation

0. [bookmark: _Toc503995743][bookmark: _Toc527911119][bookmark: _Toc527912701][bookmark: _Toc7442433]Primary PolicyGuru Mediation Server

	Test Case
	Additional Information

	Running State

	Start the PolicyGuru applications appropriate to that server. Using the ps command, verify the PolicyGuru processes are running.
	PASS FAIL OTHER

	Wait 10 minutes and verify the appropriate application processes on each server being tested are still running.
	PASS FAIL OTHER

	Wait 30 minutes and review the application log file appropriate to the server being tested to verify there are no reported errors.
	PASS FAIL OTHER

	Comments:

	

	PolicyGuru Enhanced Availability

	Verify the scripts and settings outlined in the document “PolicyGuru® Meta-Policy Controller Enhanced Availability Guide.pdf” have been implemented.

	PASS FAIL OTHER

	Log into the warm-standby Mediation Server. By taking note of timestamps, verify the scripts are syncing properly.
	PASS FAIL OTHER

	 Comments:

[bookmark: _Toc527911120][bookmark: _Toc323806295]

0. [bookmark: _Toc527912702][bookmark: _Toc7442434]Primary PolicyGuru Database Server

	Test Case
	Additional Information

	Running State

	Start the PolicyGuru applications appropriate to that server. Using the ps command, verify the PolicyGuru processes are running.
	PASS FAIL OTHER

	Wait 10 minutes and verify the appropriate application processes on each server being tested are still running.
	PASS FAIL OTHER

	Wait 30 minutes and review the application log file appropriate to the server being tested to verify there are no reported errors.
	PASS FAIL OTHER

	Comments:

	PolicyGuru Enhanced Availability

	Verify the scripts and settings outlined in the document “PolicyGuru® Meta-Policy Controller Enhanced Availability Guide.pdf” have been implemented.

	PASS FAIL OTHER

	Log into the warm-standby Database Server. By taking note of timestamps, verify the scripts are syncing properly.
	PASS FAIL OTHER

	 Comments:

[bookmark: _Toc527911121][bookmark: _Toc527912703]
0. [bookmark: _Toc7442435][bookmark: _Toc527911123]Site 1 PolicyGuru ENUM Server 1

	Test Case
	Additional Information

	Running State

	Start the PolicyGuru applications appropriate to that server. Using the ps command, verify the PolicyGuru processes are running.
	PASS FAIL OTHER

	Wait 10 minutes and verify the appropriate application processes on each server being tested are still running.
	PASS FAIL OTHER

	Wait 30 minutes and review the application log file appropriate to the server being tested to verify there are no reported errors.
	PASS FAIL OTHER

	Comments:

	PolicyGuru Enhanced Availability

	Not applicable
	Not applicable

	 Comments:

0. [bookmark: _Toc527912705][bookmark: _Toc7442436]Site 1 PolicyGuru ENUM Server 2

	Test Case
	Additional Information

	Running State

	Start the PolicyGuru applications appropriate to that server. Using the ps command, verify the PolicyGuru processes are running.
	PASS FAIL OTHER

	Wait 10 minutes and verify the appropriate application processes on each server being tested are still running.
	PASS FAIL OTHER

	Wait 30 minutes and review the application log file appropriate to the server being tested to verify there are no reported errors.
	PASS FAIL OTHER

	Comments:

	PolicyGuru Enhanced Availability

	Not applicable
	Not applicable

	 Comments:

0. [bookmark: _Toc7442437]Site 1 PolicyGuru Meta-Data Probe Server 1

	Test Case
	Additional Information

	Running State

	Start the PolicyGuru applications appropriate to that server. Using the ps command, verify the PolicyGuru processes are running.
	PASS FAIL OTHER

	Wait 10 minutes and verify the appropriate application processes on each server being tested are still running.
	PASS FAIL OTHER

	Wait 30 minutes and review the application log file appropriate to the server being tested to verify there are no reported errors.
	PASS FAIL OTHER

	Comments:

	PolicyGuru Enhanced Availability

	Not applicable
	Not applicable

	 Comments:

0. [bookmark: _Toc527911122][bookmark: _Toc527912704][bookmark: _Toc7442438]Site 1 PolicyGuru Meta-Data Probe Server 2

	Test Case
	Additional Information

	Running State

	Start the PolicyGuru applications appropriate to that server. Using the ps command, verify the PolicyGuru processes are running.
	PASS FAIL OTHER

	Wait 10 minutes and verify the appropriate application processes on each server being tested are still running.
	PASS FAIL OTHER

	Wait 30 minutes and review the application log file appropriate to the server being tested to verify there are no reported errors.
	PASS FAIL OTHER

	Comments:

	PolicyGuru Enhanced Availability

	Not applicable
	Not applicable

	 Comments:

0. [bookmark: _Toc7442439]Secondary PolicyGuru Mediation Server

	Test Case
	Additional Information

	Running State

	Start the PolicyGuru applications appropriate to that server. Using the ps command, verify the PolicyGuru processes are running.
	PASS FAIL OTHER

	Wait 10 minutes and verify the appropriate application processes on each server being tested are still running.
	PASS FAIL OTHER

	Wait 30 minutes and review the application log file appropriate to the server being tested to verify there are no reported errors.
	PASS FAIL OTHER

	Comments:

	

	PolicyGuru Enhanced Availability

	Verify the scripts and settings outlined in the document “PolicyGuru® Meta-Policy Controller Enhanced Availability Guide.pdf” have been implemented.

	PASS FAIL OTHER

	Log into the warm-standby Mediation Server. By taking note of timestamps, verify the scripts are syncing properly.
	PASS FAIL OTHER

	 Comments:

0. [bookmark: _Toc7442440]Secondary PolicyGuru Database Server

	Test Case
	Additional Information

	Running State

	Start the PolicyGuru applications appropriate to that server. Using the ps command, verify the PolicyGuru processes are running.
	PASS FAIL OTHER

	Wait 10 minutes and verify the appropriate application processes on each server being tested are still running.
	PASS FAIL OTHER

	Wait 30 minutes and review the application log file appropriate to the server being tested to verify there are no reported errors.
	PASS FAIL OTHER

	Comments:

	PolicyGuru Enhanced Availability

	Verify the scripts and settings outlined in the document “PolicyGuru® Meta-Policy Controller Enhanced Availability Guide.pdf” have been implemented.

	PASS FAIL OTHER

	Log into the warm-standby Database Server. By taking note of timestamps, verify the scripts are syncing properly.
	PASS FAIL OTHER

	 Comments:

0. [bookmark: _Toc7442441]Site 2 PolicyGuru ENUM Server 1

	Test Case
	Additional Information

	Running State

	Start the PolicyGuru applications appropriate to that server. Using the ps command, verify the PolicyGuru processes are running.
	PASS FAIL OTHER

	Wait 10 minutes and verify the appropriate application processes on each server being tested are still running.
	PASS FAIL OTHER

	Wait 30 minutes and review the application log file appropriate to the server being tested to verify there are no reported errors.
	PASS FAIL OTHER

	Comments:

	PolicyGuru Enhanced Availability

	Not applicable
	Not applicable

	 Comments:

0. [bookmark: _Toc7442442]Site 2 PolicyGuru ENUM Server 2

	Test Case
	Additional Information

	Running State

	Start the PolicyGuru applications appropriate to that server. Using the ps command, verify the PolicyGuru processes are running.
	PASS FAIL OTHER

	Wait 10 minutes and verify the appropriate application processes on each server being tested are still running.
	PASS FAIL OTHER

	Wait 30 minutes and review the application log file appropriate to the server being tested to verify there are no reported errors.
	PASS FAIL OTHER

	Comments:

	PolicyGuru Enhanced Availability

	Not applicable
	Not applicable

	 Comments:

0. [bookmark: _Toc7442443]Site 2 PolicyGuru Meta-Data Probe Server 1

	Test Case
	Additional Information

	Running State

	Start the PolicyGuru applications appropriate to that server. Using the ps command, verify the PolicyGuru processes are running.
	PASS FAIL OTHER

	Wait 10 minutes and verify the appropriate application processes on each server being tested are still running.
	PASS FAIL OTHER

	Wait 30 minutes and review the application log file appropriate to the server being tested to verify there are no reported errors.
	PASS FAIL OTHER

	Comments:

	PolicyGuru Enhanced Availability

	Not applicable
	Not applicable

	 Comments:

0. [bookmark: _Toc7442444]Site 2 PolicyGuru Meta-Data Probe Server 2

	Test Case
	Additional Information

	Running State

	Start the PolicyGuru applications appropriate to that server. Using the ps command, verify the PolicyGuru processes are running.
	PASS FAIL OTHER

	Wait 10 minutes and verify the appropriate application processes on each server being tested are still running.
	PASS FAIL OTHER

	Wait 30 minutes and review the application log file appropriate to the server being tested to verify there are no reported errors.
	PASS FAIL OTHER

	Comments:

	PolicyGuru Enhanced Availability

	Not applicable
	Not applicable

	 Comments:

[bookmark: _Toc527912722][bookmark: _Toc7442445][bookmark: _Toc527912717]Test Results – PolicyGuru ENUM Server Validation Testing

0. [bookmark: _Toc527911141][bookmark: _Toc527912723][bookmark: _Toc7442446]Site 1 PolicyGuru ENUM Server 1

	
Test Case
	Additional Information

	Receipt of ENUM Requests from SBC

	Using the Analytics screen within the PolicyGuru Client while making test calls:
	PASS FAIL OTHER

	Using the presented fields, verify data is being received from each ENUM Server by selecting to display:
· ENUM from Dataset
· Average CPS from View
· Hour from Grouping
· Display each Device, one at a time, from Device
	PASS FAIL OTHER

	Using the presented fields, verify the Mediation Server can properly determine which are source phone numbers within the data received from the ENUM Servers, and that the phone numbers are presented in a normalized format, by selecting to display:
· ENUM from Dataset
· Top 10 Source from View
· Hour from Grouping
· All from Device
	PASS FAIL OTHER

	Using the presented fields, verify the Mediation Server can properly determine which are destination phone numbers within the data received from the ENUM Servers, and that the phone numbers are presented in a normalized format, by selecting to display:
· SIP from Dataset
· Top 10 Destination from View
· Hour from Grouping
· All from Device
	PASS FAIL OTHER

	 Comments:

	
	

	
Proper Exchange and Processing of Regex Responses by SBC

	Configure and install a policy rule that allows a specific test call to proceed.
	PASS FAIL OTHER

	Configure and install a policy rule that causes a specific test call to be terminated.
	PASS FAIL OTHER

	Configure and install a policy rule that allows a specific test call to proceed.
	PASS FAIL OTHER

	Uninstall all test policies.
	PASS FAIL OTHER

	Generate a test call using phone numbers associated with terminate and redirect policies to verify they are no longer being acted upon.
	PASS FAIL OTHER

	Comments:

	

	SBC Routing of Calls Based on ENUM Server Status

	SSH into each ENUM Server under test and initiate a TCP dump on the ETH2 interface.
	PASS FAIL OTHER

	By observation of traffic received on the ETH2 interface, verify ENUM requests from the SBC are distributed in a round-robin fashion.
	PASS FAIL OTHER

	Disable the ENUM Server services on ENUM 1. Verify all ENUM requests are sent to ENUM 2 and ENUM 3.
	PASS FAIL OTHER

	Disable the ENUM Server services on ENUM 1 and ENUM 2. Verify all ENUM requests are sent to ENUM 3.
	PASS FAIL OTHER

	Re-enable the services on ENUM 1 and ENUM 2 servers. Verify the SBC recognizes they are back online and sends ENUM requests to all servers after the defined timeout expires.
	PASS FAIL OTHER

	Disable the ENUM Server services on all ENUM Servers for the site. Verify all calls proceed normally.
	PASS FAIL OTHER

	Re-enable the services on all ENUM Servers at the site. Verify ENUM requests are again received in a round-robin fashion.
	PASS FAIL OTHER

	Comments:

[bookmark: _Toc527911142]

0. [bookmark: _Toc7442447]Site 1 PolicyGuru ENUM Server 2

	
Test Case
	Additional Information

	Receipt of ENUM Requests from SBC

	Using the Analytics screen within the PolicyGuru Client while making test calls:
	PASS FAIL OTHER

	Using the presented fields, verify data is being received from each ENUM Server by selecting to display:
· ENUM from Dataset
· Average CPS from View
· Hour from Grouping
· Display each Device, one at a time, from Device
	PASS FAIL OTHER

	Using the presented fields, verify the Mediation Server can properly determine which are source phone numbers within the data received from the ENUM Servers, and that the phone numbers are presented in a normalized format, by selecting to display:
· ENUM from Dataset
· Top 10 Source from View
· Hour from Grouping
· All from Device
	PASS FAIL OTHER

	Using the presented fields, verify the Mediation Server can properly determine which are destination phone numbers within the data received from the ENUM Servers, and that the phone numbers are presented in a normalized format, by selecting to display:
· SIP from Dataset
· Top 10 Destination from View
· Hour from Grouping
· All from Device
	PASS FAIL OTHER

	 Comments:

	
	

	
Proper Exchange and Processing of Regex Responses by SBC

	Configure and install a policy rule that allows a specific test call to proceed.
	PASS FAIL OTHER

	Configure and install a policy rule that causes a specific test call to be terminated.
	PASS FAIL OTHER

	Configure and install a policy rule that allows a specific test call to proceed.
	PASS FAIL OTHER

	Uninstall all test policies.
	PASS FAIL OTHER

	Generate a test call using phone numbers associated with terminate and redirect policies to verify they are no longer being acted upon.
	PASS FAIL OTHER

	Comments:

	

	SBC Routing of Calls Based on ENUM Server Status

	SSH into each ENUM Server under test and initiate a TCP dump on the ETH2 interface.
	PASS FAIL OTHER

	By observation of traffic received on the ETH2 interface, verify ENUM requests from the SBC are distributed in a round-robin fashion.
	PASS FAIL OTHER

	Disable the ENUM Server services on ENUM 1. Verify all ENUM requests are sent to ENUM 2 and ENUM 3.
	PASS FAIL OTHER

	Disable the ENUM Server services on ENUM 1 and ENUM 2. Verify all ENUM requests are sent to ENUM 3.
	PASS FAIL OTHER

	Re-enable the services on ENUM 1 and ENUM 2 servers. Verify the SBC recognizes they are back online and sends ENUM requests to all servers after the defined timeout expires.
	PASS FAIL OTHER

	Disable the ENUM Server services on all ENUM Servers for the site. Verify all calls proceed normally.
	PASS FAIL OTHER

	Re-enable the services on all ENUM Servers at the site. Verify ENUM requests are again received in a round-robin fashion.
	PASS FAIL OTHER

	Comments:

[bookmark: _Toc527912724]
0. [bookmark: _Toc7442448]Site 2 PolicyGuru ENUM Server 1

	
Test Case
	Additional Information

	Receipt of ENUM Requests from SBC

	Using the Analytics screen within the PolicyGuru Client while making test calls:
	PASS FAIL OTHER

	Using the presented fields, verify data is being received from each ENUM Server by selecting to display:
· ENUM from Dataset
· Average CPS from View
· Hour from Grouping
· Display each Device, one at a time, from Device
	PASS FAIL OTHER

	Using the presented fields, verify the Mediation Server can properly determine which are source phone numbers within the data received from the ENUM Servers, and that the phone numbers are presented in a normalized format, by selecting to display:
· ENUM from Dataset
· Top 10 Source from View
· Hour from Grouping
· All from Device
	PASS FAIL OTHER

	Using the presented fields, verify the Mediation Server can properly determine which are destination phone numbers within the data received from the ENUM Servers, and that the phone numbers are presented in a normalized format, by selecting to display:
· SIP from Dataset
· Top 10 Destination from View
· Hour from Grouping
· All from Device
	PASS FAIL OTHER

	 Comments:

	
	

	
Proper Exchange and Processing of Regex Responses by SBC

	Configure and install a policy rule that allows a specific test call to proceed.
	PASS FAIL OTHER

	Configure and install a policy rule that causes a specific test call to be terminated.
	PASS FAIL OTHER

	Configure and install a policy rule that allows a specific test call to proceed.
	PASS FAIL OTHER

	Uninstall all test policies.
	PASS FAIL OTHER

	Generate a test call using phone numbers associated with terminate and redirect policies to verify they are no longer being acted upon.
	PASS FAIL OTHER

	Comments:

	

	SBC Routing of Calls Based on ENUM Server Status

	SSH into each ENUM Server under test and initiate a TCP dump on the ETH2 interface.
	PASS FAIL OTHER

	By observation of traffic received on the ETH2 interface, verify ENUM requests from the SBC are distributed in a round-robin fashion.
	PASS FAIL OTHER

	Disable the ENUM Server services on ENUM 1. Verify all ENUM requests are sent to ENUM 2 and ENUM 3.
	PASS FAIL OTHER

	Disable the ENUM Server services on ENUM 1 and ENUM 2. Verify all ENUM requests are sent to ENUM 3.
	PASS FAIL OTHER

	Re-enable the services on ENUM 1 and ENUM 2 servers. Verify the SBC recognizes they are back online and sends ENUM requests to all servers after the defined timeout expires.
	PASS FAIL OTHER

	Disable the ENUM Server services on all ENUM Servers for the site. Verify all calls proceed normally.
	PASS FAIL OTHER

	Re-enable the services on all ENUM Servers at the site. Verify ENUM requests are again received in a round-robin fashion.
	PASS FAIL OTHER

	Comments:

0. [bookmark: _Toc7442449]Site 2 PolicyGuru ENUM Server 2

	
Test Case
	Additional Information

	Receipt of ENUM Requests from SBC

	Using the Analytics screen within the PolicyGuru Client while making test calls:
	PASS FAIL OTHER

	Using the presented fields, verify data is being received from each ENUM Server by selecting to display:
· ENUM from Dataset
· Average CPS from View
· Hour from Grouping
· Display each Device, one at a time, from Device
	PASS FAIL OTHER

	Using the presented fields, verify the Mediation Server can properly determine which are source phone numbers within the data received from the ENUM Servers, and that the phone numbers are presented in a normalized format, by selecting to display:
· ENUM from Dataset
· Top 10 Source from View
· Hour from Grouping
· All from Device
	PASS FAIL OTHER

	Using the presented fields, verify the Mediation Server can properly determine which are destination phone numbers within the data received from the ENUM Servers, and that the phone numbers are presented in a normalized format, by selecting to display:
· SIP from Dataset
· Top 10 Destination from View
· Hour from Grouping
· All from Device
	PASS FAIL OTHER

	 Comments:

	
	

	
Proper Exchange and Processing of Regex Responses by SBC

	Configure and install a policy rule that allows a specific test call to proceed.
	PASS FAIL OTHER

	Configure and install a policy rule that causes a specific test call to be terminated.
	PASS FAIL OTHER

	Configure and install a policy rule that allows a specific test call to proceed.
	PASS FAIL OTHER

	Uninstall all test policies.
	PASS FAIL OTHER

	Generate a test call using phone numbers associated with terminate and redirect policies to verify they are no longer being acted upon.
	PASS FAIL OTHER

	Comments:

	

	SBC Routing of Calls Based on ENUM Server Status

	SSH into each ENUM Server under test and initiate a TCP dump on the ETH2 interface.
	PASS FAIL OTHER

	By observation of traffic received on the ETH2 interface, verify ENUM requests from the SBC are distributed in a round-robin fashion.
	PASS FAIL OTHER

	Disable the ENUM Server services on ENUM 1. Verify all ENUM requests are sent to ENUM 2 and ENUM 3.
	PASS FAIL OTHER

	Disable the ENUM Server services on ENUM 1 and ENUM 2. Verify all ENUM requests are sent to ENUM 3.
	PASS FAIL OTHER

	Re-enable the services on ENUM 1 and ENUM 2 servers. Verify the SBC recognizes they are back online and sends ENUM requests to all servers after the defined timeout expires.
	PASS FAIL OTHER

	Disable the ENUM Server services on all ENUM Servers for the site. Verify all calls proceed normally.
	PASS FAIL OTHER

	Re-enable the services on all ENUM Servers at the site. Verify ENUM requests are again received in a round-robin fashion.
	PASS FAIL OTHER

	Comments:

[bookmark: _Toc7442450]Test Results – PolicyGuru Meta-Data Probe Server Validation

0. [bookmark: _Toc527911136][bookmark: _Toc527912718][bookmark: _Toc7442451]Site 1 PolicyGuru Meta-Data Probe Server 1

	Test Case
	Additional Information

	Receipt of UDP SIP Signaling and RTP from Tap Device

	From the operating system of the Meta-Data Probe under test, verify interface ports 6 and 7 are in a bonded configuration.
	PASS FAIL OTHER

	From the operating system of the Meta-Data Probe under test, start a packet capture on the bonded interface. Verify data is being forwarded from the tap device to the Meta-Data Probe server over this interface.
	PASS FAIL OTHER

	Comments:

	

	Proper Processing of Received Data

	Using the Analytics screen within the PolicyGuru Client:
	

	Using the presented fields, verify data is being received from each Meta-Data Probe by selecting to display:
· SIP from Dataset
· Average CPS from View
· Hour from Grouping
· Display each Device, one at a time, from Device
	PASS FAIL OTHER

	Using the presented fields, verify the Mediation Server can properly determine which are source phone numbers within the data received from the Meta-Data Probe servers, and that the phone numbers are presented in a normalized format, by selecting to display:
· SIP from Dataset
· Top 10 Source from View
· Hour from Grouping
· All from Device
	PASS FAIL OTHER

	Using the presented fields, verify the Mediation Server can properly determine which are destination phone numbers within the data received from the Meta-Data Probe servers, and that the phone numbers are presented in a normalized format, by selecting to display:
· SIP from Dataset
· Top 10 Destination from View
· Hour from Grouping
· All from Device
	PASS FAIL OTHER

	Comments:

0. [bookmark: _Toc527911137][bookmark: _Toc527912719][bookmark: _Toc7442452]Site 2 PolicyGuru Meta-Data Probe Server 2

	Test Case
	Additional Information

	Receipt of UDP SIP Signaling and RTP from Tap Device

	From the operating system of the Meta-Data Probe under test, verify interface ports 6 and 7 are in a bonded configuration.
	PASS FAIL OTHER

	From the operating system of the Meta-Data Probe under test, start a packet capture on the bonded interface. Verify data is being forwarded from the tap device to the Meta-Data Probe server over this interface.
	PASS FAIL OTHER

	Comments:

	

	Proper Processing of Received Data

	Using the Analytics screen within the PolicyGuru Client:
	

	Using the presented fields, verify data is being received from each Meta-Data Probe by selecting to display:
· SIP from Dataset
· Average CPS from View
· Hour from Grouping
· Display each Device, one at a time, from Device
	PASS FAIL OTHER

	Using the presented fields, verify the Mediation Server can properly determine which are source phone numbers within the data received from the Meta-Data Probe servers, and that the phone numbers are presented in a normalized format, by selecting to display:
· SIP from Dataset
· Top 10 Source from View
· Hour from Grouping
· All from Device
	PASS FAIL OTHER

	Using the presented fields, verify the Mediation Server can properly determine which are destination phone numbers within the data received from the Meta-Data Probe servers, and that the phone numbers are presented in a normalized format, by selecting to display:
· SIP from Dataset
· Top 10 Destination from View
· Hour from Grouping
· All from Device
	PASS FAIL OTHER

	Comments:

0. [bookmark: _Toc527911138][bookmark: _Toc527912720][bookmark: _Toc7442453]Site 2 PolicyGuru Meta-Data Probe Server 1

	Test Case
	Additional Information

	Receipt of UDP SIP Signaling and RTP from Tap Device

	From the operating system of the Meta-Data Probe under test, verify interface ports 6 and 7 are in a bonded configuration.
	PASS FAIL OTHER

	From the operating system of the Meta-Data Probe under test, start a packet capture on the bonded interface. Verify data is being forwarded from the tap device to the Meta-Data Probe server over this interface.
	PASS FAIL OTHER

	Comments:

	

	Proper Processing of Received Data

	Using the Analytics screen within the PolicyGuru Client:
	

	Using the presented fields, verify data is being received from each Meta-Data Probe by selecting to display:
· SIP from Dataset
· Average CPS from View
· Hour from Grouping
· Display each Device, one at a time, from Device
	PASS FAIL OTHER

	Using the presented fields, verify the Mediation Server can properly determine which are source phone numbers within the data received from the Meta-Data Probe servers, and that the phone numbers are presented in a normalized format, by selecting to display:
· SIP from Dataset
· Top 10 Source from View
· Hour from Grouping
· All from Device
	PASS FAIL OTHER

	Using the presented fields, verify the Mediation Server can properly determine which are destination phone numbers within the data received from the Meta-Data Probe servers, and that the phone numbers are presented in a normalized format, by selecting to display:
· SIP from Dataset
· Top 10 Destination from View
· Hour from Grouping
· All from Device
	PASS FAIL OTHER

	Comments:

0. [bookmark: _Toc527911139][bookmark: _Toc527912721][bookmark: _Toc7442454]Site 2 PolicyGuru Meta-Data Probe Server 2

	Test Case
	Additional Information

	Receipt of UDP SIP Signaling and RTP from Tap Device

	From the operating system of the Meta-Data Probe under test, verify interface ports 6 and 7 are in a bonded configuration.
	PASS FAIL OTHER

	From the operating system of the Meta-Data Probe under test, start a packet capture on the bonded interface. Verify data is being forwarded from the tap device to the Meta-Data Probe server over this interface.
	PASS FAIL OTHER

	Comments:

	

	Proper Processing of Received Data

	Using the Analytics screen within the PolicyGuru Client:
	

	Using the presented fields, verify data is being received from each Meta-Data Probe by selecting to display:
· SIP from Dataset
· Average CPS from View
· Hour from Grouping
· Display each Device, one at a time, from Device
	PASS FAIL OTHER

	Using the presented fields, verify the Mediation Server can properly determine which are source phone numbers within the data received from the Meta-Data Probe servers, and that the phone numbers are presented in a normalized format, by selecting to display:
· SIP from Dataset
· Top 10 Source from View
· Hour from Grouping
· All from Device
	PASS FAIL OTHER

	Using the presented fields, verify the Mediation Server can properly determine which are destination phone numbers within the data received from the Meta-Data Probe servers, and that the phone numbers are presented in a normalized format, by selecting to display:
· SIP from Dataset
· Top 10 Destination from View
· Hour from Grouping
· All from Device
	PASS FAIL OTHER

	Comments:

Overall Exceptions and/or Comments:
	

	

[bookmark: _Toc527912725][bookmark: _Toc7442455]Appendix C: Final Acceptance
NOTE: This page should not be signed until ALL results and comments have been fully documented in Appendix B. Signing below indicates agreement between the Customer Witness and SecureLogix Tester that:

· The contents of Appendix B are final.
· The contents of Appendix B are complete and accurate.

	This Functional System Test Result was Accepted on:

	Date
	
	
	Time
	

	
	
	
	
	

	Customer Representative:
	SecureLogix Representative:

	Name (Printed)
	

	
	Name (Printed)
	

	Signature
	

	
	Signature
	

	Title
	

	
	Title
	

This document may be faxed or scanned and emailed to the assigned SecureLogix Project Manager listed below. Please be sure to include the entire document, not just Appendix B, and verify all signature areas are legible.

Jane Byrne
Senior Project Engineer
SecureLogix Corporation
Main: 210.402.9669
Direct/Vmail: 210.546.1051
Fax: 210.402.6996
jbyrne@securelogix.com

PolicyGuru System Enhanced Availability Guide_7212017.pdf

PolicyGuru®

Meta-Policy Controller

Enhanced Availability Guide

Page 2 of 21

Contents

Introduction .. 3

Loss of Information During Recovery.. 4

Database Synchronization Script .. 4

Overview ... 4

Workflow Diagram .. 4

Database Synchronization Script Installation ... 5

Mediation Server Backup Script .. 6

Overview ... 6

Workflow Diagram .. 7

Mediation Server Backup Script Installation ... 8

Failover Procedure .. 9

Appendix B: Database Synchronization Script .. 12

Appendix C: Mediation Server Backup Script ... 18

Page 3 of 21

PolicyGuru® System Enhanced Availability
Model
Introduction
The PolicyGuru Solution can be deployed in a distributed Enhanced Availability model to allow for rapid

system recovery in the event of active management cluster failure. In this configuration model, you

deploy two Mediation Server and Database Server pairs at separate sites as active and warm-standby

management cluster pairs. These sites can be in different locations on the same campus or in different

locations across the country or continent. Global deployments where the two locations are on different

continents are not supported.

One Mediation Server/Database Server pair is the active pair at any time to support normal operations,

while the secondary pair is in warm-standby mode, ready to be placed in the active role if normal

operations of the currently active pair are impaired. The secondary servers are powered on but are not

active at the PolicyGuru application level. The standby Database Server is regularly synchronized with

the active Database Server and the active Mediation Server configuration is regularly backed up to the

standby Mediation Server so its configuration can be quickly imported to the standby when failover is

needed.

To mitigate issues related to data integrity, loss, and potential duplication, the Mediation Server and

Database Server co-resident at a site are considered paired and are restricted to communicating with

each other; that is, the Mediation Serve at Site A only communicates with the Database Server at Site A

and is not permitted to communicate with the Database Server at Site B if the Database Server at Site A

fails. Total or partial loss of any active management cluster component may trigger the failover

procedure, in which the entire cluster is failed over to the secondary warm standby cluster. The

secondary cluster then assumes and retains the active role. The former secondary server pair, once

repaired, assumes the warm standby mode until a failover event occurs, when the roles will again be

reversed using the failover procedure on page 9.

Depending on the error condition observed, triggering the failover procedure does not necessarily mean

that PolicyGuru System operations have been disrupted. The procedure can be invoked as a

preventative measure when certain issues are observed, in addition to more serious faults.

SecureLogix has Python scripts available to perform the backup and synchronization operations on the

standby management cluster. Instructions for their installation and use are provided in this guide.

Contact SecureLogix Technical Support to obtain copies of the scripts. Their installation, function, and

use is described below.

Note: For general system backup procedures for maintaining a complete backup of all PolicyGuru

Solution components, refer to the PolicyGuru® Meta-Policy Controller Backup and Recovery Guide. This

document applies specifically to implementing the Enhanced Availability deployment model.

Page 4 of 21

Loss of Information During Recovery
The recovery procedures described in this document will not restore a PolicyGuru System to the point of

failure, but rather to the point of the last backup execution. Therefore, a system recovered with this

procedure will lose call data and any system configuration changes that occurred after the backup was

executed. SecureLogix recommends running the scripts at least daily. Administrators desiring a shorter

Recovery Point Objective should execute the scripts more frequently.

Administrators who need backup and recovery strategies that do not lose data or that minimize data

loss to the greatest extent possible will need to implement alternative backup and recovery strategies

that are beyond the scope of this document and not supported by SecureLogix.

Database Synchronization Script

Overview
A database backup and synchronization script named pgsync.py is scheduled as a cron job to run at the

same time on both the active and standby database servers. When the script runs on the active

database server, it exports the database, creates a backup tar file, and then copies the tar file to the

standby database. A copy of the backup remains on the active database server. A configurable number

of previous backups are retained on each server, with the oldest backup deleted when the configured

number is exceeded when the script runs. When the script runs on the standby database, it checks for

the presence of a new backup file. If one is found, it waits a configurable number of minutes after the

backup file stops growing (by default, 5 minutes), and then untars it, starts the psql database (not the

ngp service),imports the backup into the database, and then stops the psql database when the import

completes. It then checks to see if the number of existing backups exceeds the configured number of

backups to retain and if so, deletes the oldest backup. This process ensures that the standby database

remains synched to the last active database backup. The script determines which is the active database

and which is the standby by determining whether the ngp service is running on the system. Therefore, it

is important to ensure that the ngp service remains off on the standby database server by setting

chkconfig off.

It is recommended that the script be scheduled to run at least daily. A copy of this script can be found in

“Appendix B: Database Synchronization Script” on page 12.

Workflow Diagram
Figure 1 illustrates the workflow the script executes.

Page 5 of 21

Figure 1: Database Synchronization Script Workflow

Database Synchronization Script Installation
To install the database synchronization script

1. Log in to each database and become the postgres user:

$ sudo su – postgres

2. Create or modify the .bash_profile in the postgres home directory at /opt/ngp/pgsql-

9.3/postgres/.bash_profile:

.bash_profile

User specific environment and startup programs

LD_LIBRARY_PATH=$HOME/lib

PATH=$PATH:$HOME/bin

PGDATA=/opt/ngp/db

export PATH

export LD_LIBRARY_PATH

export PGDATA

3. Create a directory named pgbackups/backups in the postgres home directory:

$ mkdir -p ~/pgbackups/backups

Page 6 of 21

4. Copy the script to the pgbackups directory you created in the postgres home directory and make

sure it is owner executable:

$ chmod u+x ~/pgbackups/pgsync.py

5. Create ssh keys for the postgres user:

$ ssh-keygen

use defaults, no password

6. Copy the public keys from one server to the other and place them in the /opt/ngp/pgsql-

9.3//.ssh/authorized_keys file and chmod the file to 400.

7. Create a crontab entry to run at the same time on each of the 2 database servers:

$ crontab -e

0 6 * * * . $HOME/.bash_profile; /opt/ngp/pgsql-

9.3/pgbackups/pgsync.py [-j JOBS] [-t TIMEOUT] [-b BACKUPS] OTHER-

DATABASE

Where:

 -t TIMEOUT is the number of seconds for new import wait
 -j JOBS is number of jobs to spawn for pg_dump
 -b BACKUPS is the number of backups to keep
 OTHER-DATABASE is the IP address and path of the backup directory on the other database
server

To view the pgsync help file, use the following command:

pgsync [-h] [-t TIMEOUT] [-j JOBS] [-b BACKUPS] REMOTE_HOST

 -t # timeout(seconds) for new import wait
 -j # number of jobs to spawn for pg_dump
 -b # number of backups to keep
 -h this message

8. A log file is created at /pgbackups/pgsync.log when the script runs and then appended on each

subsequent run. It is recommended that you use log rotation configuration to manage the log size.

Mediation Server Backup Script

Overview
A Python script named ngpsync.py backs up the active Mediation Server configuration files and copies

them to a backup directory on the standby Mediation Server. This script is scheduled as a cron job to run

at the same time on both the active and standby Mediation Server. When the script runs on the active

Mediation Server, it creates a backup tar file of the ngp directory (excluding unnecessary files and the

system-specific files in /config/network), adds the .m2 directory (which contains Rule assets) to the tar

file, and then copies the tar file to the standby Mediation Server. A copy of the backup file remains on

Page 7 of 21

the active Mediation Server. A configurable number of previous backups are retained on each server,

with the oldest backup deleted when the configured number is exceeded when the script runs.

Unlike the database, the active Mediation Server backup is not automatically synchronized to the

standby Mediation Server. It is imported during the failover procedure in case its configuration or other

errors caused the failure. Importing the backup takes only a few minutes during the failover procedure

and you can choose which backup to import.

It is recommended that the script be scheduled to run at least daily. A copy of this script can be found in

“Appendix C: Mediation Server Backup Script” on page 18.

Workflow Diagram
Figure 2 illustrates the workflow the script executes.

Figure 2: Mediation Server Backup Script Workflow

Workflow details:

The script checks ngp service status and executes active device operations if running, or standby

device operation if not running, as outlined below:

Page 8 of 21

Active device operations:

a. tar czf ngpbackupTIMESTAMP.tgz -X exclusionsfile -C /opt ngp

Where exclusionsfile:

 jboss-as-7.2.0.Final/standalone/data

 jboss-as-7.2.0.Final/standalone/tmp

 jboss-as-7.2.0.Final/standalone/log

 config/network

 openldap/var

 log

 *.log

 *.pyc

 *.pyo

 *.gitignore

b. tar rzf ngpbackupTIMESTAMP.tgz -C /root .m2

c. rsync -a ngpbackupTIMESTAMP.tgz root@remote:/opt/ngpbackups/backups/

d. Remove oldest backup if more than the configured limit exist.

Standby device operation:

 Remove oldest backup if more than the configured limit exist.

Mediation Server Backup Script Installation
To install the Mediation Server backup script

1. Log in to each Mediation Server and become root:

$ sudo -i

2. Create the directory path /opt/ngpbackups/backups:

mkdir -p /opt/ngpbackups/backups

3. Change to the /opt/ngpbackups directory:

cd /opt/ngpbackups

4. Copy the script to /opt/ngpbackups/ngpsync.py and make sure it is owner executable:

Page 9 of 21

chmod u+x ngpsync.py

5. Ensure PermitRootLogin without-password is set in sshd configuration:

$ grep PermitRootLogin /etc/ssh/sshd_config
#PermitRootLogin no
PermitRootLogin without-password

Note: if you change the sshd configuration, you must restart or reload sshd:

6. Create ssh keys to the opposing server if none exist:

ssh-keygen

use defaults, no password

7. Copy the public keys from one server to the other and put them in the /.ssh/authorized_keys
file and chmod the file to 400.

8. Create a cron entry to run at the same time on each Mediation Server:

vi /etc/cron.d/ngpsync
0 6 * * * = every day 0600 UTC = 0100 CST
0 6 * * * root . $HOME/.bash_profile; /opt/ngpbackups/ngpsync.py

[-b BACKUPS] OTHER-MEDIATION

Where:

 -b BACKUPS is the number of backups to keep
 -OTHER-MEDIATION is the IP address and path to the backup directory on the standby
Mediation Server.

9. To view the ngpsync help file, use the following command:

ngpsync [-h] [-b BACKUPS] REMOTE_HOST

 -b # number of backups to keep
 -h this message

10. A log file is created at /opt/ngpbackups/ngpsync.log the first time the script runs and then
appended on each subsequent run. It is recommended that you use log rotation configuration to
manage the log size.

Failover Procedure
For purposes of the procedure below, the active Mediation Server (MS1) and active Database Server

(DB1) are located at Data Center A and the secondary warm-standby Mediation Server (MS2) and

Page 10 of 21

Database Server (DB2) are located at Data Center B and the database has been kept synchronized per

the Backup and Restore instructions in this document.

To fail over the active management cluster to the standby cluster

1. Stop the ngp service on the active Mediation Server (MS1) and Database Server (DB1):

service ngp stop 5

2. Prevent the ngp service on the failed servers from starting on reboot by executing the following

command on MS1 and DB1::

chkconfig ngp off

3. SSH to the standby Mediation Server.

4. Change directory to /opt/ngpbackups/backups:

$ cd /opt/ngpbackups/backups
$ ls -l
ngpbackupTIMESTAMP1.tgz
ngpbackupTIMESTAMP2.tgz

5. Restore from the selected backup:

$ tar xzf ngpbackupTIMESTAMP2.tgz -C /opt --exclude=.m2
$ tar xzf ngpbackupTIMESTAMP2.tgz -C /root --exclude=ngp

6. Start the ngp service on the secondary Database Server (DB2):

service ngp start

7. After startup completes, verify that all processes are green:

service ngp status

8. Enable chkconfig of the ngp process on DB2 to allow automatic ngp startup on system startup:

chkconfig ngp on

9. Start the ngp service on the secondary Mediation Server (MS2):

service ngp start

10. After startup completes, verify that all processes are green:

service ngp status

11. Enable chkconfig of the ngp process on MS2 to allow automatic ngp startup on system startup:
chkconfig ngp on

The former secondary server pair (MS2 and DB2) are now the active management cluster.

Page 11 of 21

12. Redirect all ENUM Servers and Metadata Probes to the now-active Mediation Server: (MS2).

a. SSH to each ENUM Server and Metadata Probe.

b. On each system, edit /opt/ngp/config/network/jboss_mediation_ip to reflect the IP

address of MS2.

c. On each ENUM Server, optionally reset the SEP policy. This is recommended if SEP policy

changes have occurred since the last time Mediation Server configuration backup and

Database backup were performed. Resetting the SEP policy will allow the ENUM Servers to

most easily sync to the current SEP Policy configured on MS2.To reset SEP Policy, issue the

following command on each ENUM server:

sqlite3 /opt/ngp/bin/enum/config.db 'update items set value = "1"

where name = "policyReset";'

d. On each system, restart the ngp service to effect the change.

service ngp stop 5

service ngp start

13. Log in to MS2 and verify functionality.

14. Perform any configuration or policy changes that were previously performed on MS1 since the last

configuration and database backup (and thus are not present on MS2).

15. Commit SEP Policy and Build and Deploy CEP Policy.

Log and call activity locally cached on the ENUM Servers and Metadata Probes during the failover

procedure is automatically uploaded when communication with the active Mediation Server is

established.

It is recommended that recovery operation be performed as soon as possible on MS1 and DB1 to restore

them to an operational state so that they can be put back into service functioning as the warm-standby

pair to support a future failover event.

Page 12 of 21

Appendix B: Database Synchronization Script
#!/opt/ngp/lib/python/bin/python

import os
import sys
import time
import shutil
import tarfile
import subprocess as sp
from glob import glob

help message
def show_help(e=0):
 print 'usage: pgsync [-h] [-t TIMEOUT] [-j JOBS] [-b BACKUPS] REMOTE_HOST'
 print
 print "\t-t #\ttimeout(seconds) for new import wait"
 print "\t-j #\tnumber of jobs to spawn for pg_dump"
 print "\t-b #\tnumber of backups to keep"
 print "\t-h\tthis message"
 print
 sys.exit(e)

try:
 REMOTE_HOST = sys.argv[-1]
except:
 show_help(1)

BASE_DIR = '/'.join([os.getenv('HOME'), 'pgbackups'])
BACKUPS_DIR = '/'.join([BASE_DIR, 'backups'])
LOG_FILE = '/'.join([BASE_DIR, 'pgsync.log'])

logging function for the pgsync process
def dumplogger(level, msg):
 timestamp = time.strftime('%Y-%m-%d %H:%M:%S')
 logmsg = ''.join([timestamp, ' pgsync: ', level, ': ', msg, '\n'])
 with open(LOG_FILE, 'a+') as log:
 log.write(logmsg)
 #print logmsg.rstrip()

return the time in seconds from start to now as a string
def get_runtime(start):
 runtime = int(time.time() - start)
 return str(runtime)

execute shell commands, return the exit-code, and log errors
def run_command(cmd):
 s = sp.Popen(cmd, stdout=sp.PIPE, stderr=sp.PIPE)
 output, error = s.communicate()
 rc = s.returncode
 # if an error occurs, log it
 if len(error):
 dumplogger('ERROR', error.rstrip())

Page 13 of 21

 return rc

check service status and return the return code from the command
def check_service_status(service):
 cmd = ['/sbin/service', service ,'status']
 result = run_command(cmd)
 return result

create the pg_dump command and execute it
def execute_pg_dump(jobs):
 dump = '.'.join(['pgbackup', time.strftime('%Y%m%d%H%M%S')])
 dumpPath = '/'.join([BACKUPS_DIR, dump])
 cmd = 'pg_dump ngp -F directory -f'.split()
 cmd.append(dumpPath)
 # set jobs number if more than 1
 if jobs > 1:
 cmd.append('-j')
 cmd.append(str(jobs))
 result = run_command(cmd)
 if result != 0:
 return result
 return dump

tarball dump directory and remove the originals
def tar_dumpdir(dump):
 zname = '.'.join([dump, 'tgz'])
 os.chdir(BACKUPS_DIR)
 tar = tarfile.open(zname, 'w:gz')
 tar.add(dump)
 tar.close()
 shutil.rmtree(dump)
 return zname

use rsync to sync backup directories
def sync_backups(zname):
 dumplogger('INFO', ': '.join(['syncing backups with', REMOTE_HOST]))
 user = os.getenv('USER')
 login = '@'.join([user, REMOTE_HOST])
 destPath = ':'.join([login, BACKUPS_DIR])
 rsync = ['rsync', '-a', zname, destPath]
 result = run_command(rsync)
 dumplogger('INFO', 'sync completed')
 return result

maintain old backups by options
def maintain_backups(limit):
 globPath = '/'.join([BACKUPS_DIR, 'pgbackup*.tgz'])
 backups = sorted(glob(globPath), reverse=True)
 removed = 0
 for i, backup in enumerate(backups):
 if i >= int(limit):
 os.remove(backup)
 removed += 1
 return removed

Page 14 of 21

wait for a new import from the active database
def wait_for_import(timeout):
 dumplogger('INFO', 'waiting ' + str(timeout) + ' seconds for new import')
 timeoutTime = time.time() + timeout
 globPath = '/'.join([BACKUPS_DIR, '*'])
 numBaksExist = len(glob(globPath))
 numBaks = numBaksExist
 while numBaksExist <= numBaks:
 if time.time() > timeoutTime:
 return 1
 time.sleep(5)
 numBaksExist = len(glob(globPath))
 return 0

start/stop DB using pg_ctl
def pgctl_db(action):
 dumplogger('INFO', ' '.join([action , 'database']))
 cmd = ['pg_ctl', action]
 for i in '-s -w -t 60 -l'.split():
 cmd.append(i)
 cmd.append(LOG_FILE)
 result = run_command(cmd)
 if result != 0:
 dumplogger('ERROR', ' '.join(['database failed to', action]))
 return result

return the file path for the latest pg dump
def get_latest_dump():
 globPath = '/'.join([BACKUPS_DIR, 'pgbackup*'])
 latest = sorted(glob(globPath), reverse=True)[0]
 return latest

wait for new import to complete its transfer
def wait_for_entire_import(zdump):
 lastSize = os.stat(zdump).st_size
 count = 0
 while count < 5:
 time.sleep(60)
 newSize = os.stat(zdump).st_size
 if newSize > lastSize:
 lastSize = newSize
 count = 0
 else:
 count += 1

unzip and expand tar of the latest backup
def decompress_backup(zdump):
 tar = tarfile.open(zdump, 'r:gz')
 tar.extractall(path=BACKUPS_DIR)
 tar.close()
 return zdump[:-4]

execute the import/pg_restore

Page 15 of 21

def import_latest_dump(dump, jobs):
 cmd = ['pg_restore', '-d', 'ngp']
 if jobs > 1:
 cmd.append('-j')
 cmd.append(str(jobs))
 cmd.append(dump)
 result = run_command(cmd)
 shutil.rmtree(dump)
 return result

drop and create the ngp database
def resetDB():
 dropcmd = ['dropdb', 'ngp']
 result = run_command(dropcmd)
 if result != 0:
 dumplogger('ERROR', 'failed to drop ngp database')
 createcmd = ['createdb','ngp']
 result = run_command(createcmd)
 if result != 0:
 dumplogger('ERROR', 'failed to create ngp database')
 sys.exit(1)

run on standby database
def run_standby(timeout, jobs):
 if wait_for_import(timeout) != 0:
 dumplogger('ERROR', 'timeout waiting for new import')
 return 1
 zdump = get_latest_dump()
 dumplogger('INFO', 'waiting for new import ' + str(zdump) + ' to complete
transfer')
 wait_for_entire_import(zdump)
 dumplogger('INFO', 'decompressing backup')
 dump = decompress_backup(zdump)
 dumplogger('INFO', 'reset ngp database')
 resetDB()
 dumplogger('INFO', 'importing ngp database from latest backup')
 result = import_latest_dump(dump, jobs)
 if result != 0:
 dumplogger('ERROR', 'latest import failed')
 return 1
 dumplogger('INFO', 'latest import succeeded')
 return 0

go through standby operations
def standby_ops(timeout, backups, jobs):
 dumplogger('INFO', 'running standby device operations')
 dbStarted = pgctl_db('start')
 if dbStarted != 0:
 return 1
 result = run_standby(timeout, jobs)
 if result == 0:
 maintain_backups(backups)
 return result

Page 16 of 21

build dict from args
def get_opts():
 if 'python' in sys.argv[0]:
 args = sys.argv[1:]
 args = sys.argv
 if len(args) % 2:
 dumplogger('ERROR', 'command not valid')
 show_help(e=1)
 pargs = ['t', 'j', 'b', 'h']
 opts = {'timeout': 3600, 'jobs': 1, 'backups': 14}
 for i, a in enumerate(args):
 a = a.strip('-')
 if a in pargs:
 if a == 'h':
 show_help()
 elif a == 't':
 opts['timeout'] = int(args[i+1])
 elif a == 'j':
 opts['jobs'] = int(args[i+1])
 elif a == 'b':
 opts['backups'] = int(args[i+1])
 return opts

main function
def main():
 try:
 opts = get_opts()
 except:
 show_help(1)

 optsstr = ', '.join([': '.join([k, str(opts.get(k))]) for k in opts])
 dumplogger('INFO', ' '. join(['starting pgsync with options', optsstr]))

 # check if NGP is running on this system
 if check_service_status('ngp') != 0:
 result = 1
 try:
 result = standby_ops(opts.get('timeout'), opts.get('backups'),
opts.get('jobs'))
 except:
 result = 1
 dumplogger('ERROR', 'standby system failed to import')
 finally:
 if pgctl_db('status') == 0:
 pgctl_db('stop')
 sys.exit(result)

 dumplogger('INFO', 'running active device operations')
 dumplogger('INFO', 'delaying start for 1 minute')
 time.sleep(60)
 dumplogger('INFO', 'starting dump of database')
 pgdump = execute_pg_dump(opts.get('jobs'))
 if type(pgdump) == int:
 sys.exit(1)

Page 17 of 21

 dumplogger('INFO', 'database dump created: ' + str(pgdump))
 dumplogger('INFO', 'tarballing dump directory')
 backup = tar_dumpdir(pgdump)
 rmbaks = maintain_backups(opts.get('backups'))
 if rmbaks > 0:
 msg = ' '.join(['maintenance removed', str(rmbaks), 'backup(s)'])
 dumplogger('INFO', msg)
 dumplogger('INFO', 'sending latest backup ' + str(backup) + ' to standby
device')
 sync = sync_backups(backup)

if __name__ == '__main__':
 try:
 main()
 except Exception, e:
 msg = ': '.join(['main failed to run successfully', e.message])
 dumplogger('ERROR', msg)
 sys.exit(1)

Page 18 of 21

Appendix C: Mediation Server Backup Script
#!/usr/bin/python

import os
import sys
import time
import tarfile
from glob import glob
import subprocess as sp

help message
def show_help(e=0):
 print 'usage: ngpsync [-h] [-b BACKUPS] REMOTE_HOST'
 print
 print "\t-b #\tnumber of backups to keep"
 print "\t-h\tthis message"
 print
 sys.exit(e)

REMOTE_HOST = sys.argv[-1]
BASE_DIR = '/opt/ngpbackups'
BACKUPS_DIR = '/'.join([BASE_DIR, 'backups'])
LOG_FILE = '/'.join([BASE_DIR, 'ngpsync.log'])
EXCLUDE_DIRS = [
 'jboss-as-7.2.0.Final/standalone/data',
 'jboss-as-7.2.0.Final/standalone/tmp',
 'jboss-as-7.2.0.Final/standalone/log',
 'config/network',
 'openldap/var',
 'log'
]
EXCLUDE_FILES = [
 '.log',
 '.gitignore',
 '.pyc',
 '.pyo'
]

logging function for the ngp sync process
def synclogger(level, msg):
 timestamp = time.strftime('%Y-%m-%d %H:%M:%S')
 logmsg = ''.join([timestamp, ' ngpsync: ', level, ': ', msg, '\n'])
 with open(LOG_FILE, 'a+') as log:
 log.write(logmsg)
 #print logmsg.rstrip()

directory match exclusions
def exclude_dirs(filepath):
 for i in EXCLUDE_DIRS:
 end = len(i)
 if filepath[:end] == i:

Page 19 of 21

 return True
 return False

file match exclusions
def exclude_files(filename):
 for i in EXCLUDE_FILES:
 begin = 0 - len(i)
 if filename[begin:] == i:
 return True
 return False

filter out excluded directories and files
def exclusions(filename):
 filename = filename[4:]
 if any((exclude_dirs(filename), exclude_files(filename))):
 return True
 return False

tarball the /opt/ngp directory into BASE_DIR
def create_backup():
 os.chdir('/opt')
 timestamp = time.strftime('%Y%m%d%H%M%S')
 backupName = ''.join([BACKUPS_DIR, '/ngpbackup', timestamp, '.tgz'])
 backup = tarfile.open(backupName, 'w:gz')
 backup.add('ngp', exclude=exclusions)
 os.chdir('/root')
 backup.add('.m2')
 backup.close()
 os.chdir(BASE_DIR)
 return backup.name

execute shell commands, return the exit-code, and log errors
def run_command(cmd):
 s = sp.Popen(cmd, stdout=sp.PIPE, stderr=sp.PIPE)
 output, error = s.communicate()
 rc = s.returncode
 # if an error occurs, log it
 if len(error):
 synclogger('ERROR', error.rstrip())
 return rc

rsync latest backup to the standby mediation server's backup directory
def rsync_latest(latest):
 remoteHost = '@'.join([os.getenv('USER'), REMOTE_HOST])
 remotePath = ':'.join([remoteHost, BACKUPS_DIR])
 cmd = ['/usr/bin/rsync', '-a', latest, remotePath]
 rc = run_command(cmd)
 return rc

check service status and return the return code from the command
def check_service_status(service):
 cmd = ['/sbin/service', service ,'status']
 result = run_command(cmd)
 return result

Page 20 of 21

remove oldest backups if number of backups exceeds maintenance input
def maintenance(limit):
 backups = sorted(glob('/'.join([BACKUPS_DIR, '*.tgz'])), reverse=True)
 count = 0
 for i, backup in enumerate(backups):
 if i >= limit:
 os.remove(backup)
 count += 1
 return count

build dict from args
def get_opts():
 if 'python' in sys.argv[0]:
 args = sys.argv[1:]
 else:
 args = sys.argv
 if len(args) < 2:
 show_help(1)
 pargs = ['b', 'h']
 opts = {'backups': 14}
 for i, a in enumerate(args):
 a = a.strip('-')
 if a in pargs:
 if a == 'h':
 show_help()
 elif a == 'b':
 opts['backups'] = int(args[i+1])
 return opts

run backup and sync on active server
def run_backup():
 synclogger('[INFO]', 'starting ngp backup')
 latest = create_backup()
 size = str(os.stat(latest).st_size)
 synclogger('[INFO]', 'backup complete: ' + latest + ' : ' + size + ' bytes')
 synclogger('[INFO]', 'starting backup sync')
 rsync_latest(latest)
 synclogger('[INFO]', 'backup sync complete')

run maintenance
def main():

 ngp = check_service_status('ngp')

 if ngp == 0:
 run_backup()
 else:
 opts['backups'] -= 1

 synclogger('[INFO]', 'performing backup maintenance')
 removed = maintenance(opts.get('backups'))
 synclogger('[INFO]', ' '.join(['removed', str(removed), 'backups']))

Page 21 of 21

if __name__ == '__main__':

 opts = None
 try:
 opts = get_opts()
 except:
 sys.exit(1)

 main()

		Introduction

		Loss of Information During Recovery

		Database Synchronization Script

		Overview

		Workflow Diagram

		Database Synchronization Script Installation

		Mediation Server Backup Script

		Overview

		Workflow Diagram

		Mediation Server Backup Script Installation

		Failover Procedure

		Appendix B: Database Synchronization Script

		Appendix C: Mediation Server Backup Script

PolicyGuru System Enhanced Availability Guide_7212017.pdf

PolicyGuru®

Meta-Policy Controller

Enhanced Availability Guide

Page 2 of 21

Contents

Introduction .. 3

Loss of Information During Recovery.. 4

Database Synchronization Script .. 4

Overview ... 4

Workflow Diagram .. 4

Database Synchronization Script Installation ... 5

Mediation Server Backup Script .. 6

Overview ... 6

Workflow Diagram .. 7

Mediation Server Backup Script Installation ... 8

Failover Procedure .. 9

Appendix B: Database Synchronization Script .. 12

Appendix C: Mediation Server Backup Script ... 18

Page 3 of 21

PolicyGuru® System Enhanced Availability
Model
Introduction
The PolicyGuru Solution can be deployed in a distributed Enhanced Availability model to allow for rapid

system recovery in the event of active management cluster failure. In this configuration model, you

deploy two Mediation Server and Database Server pairs at separate sites as active and warm-standby

management cluster pairs. These sites can be in different locations on the same campus or in different

locations across the country or continent. Global deployments where the two locations are on different

continents are not supported.

One Mediation Server/Database Server pair is the active pair at any time to support normal operations,

while the secondary pair is in warm-standby mode, ready to be placed in the active role if normal

operations of the currently active pair are impaired. The secondary servers are powered on but are not

active at the PolicyGuru application level. The standby Database Server is regularly synchronized with

the active Database Server and the active Mediation Server configuration is regularly backed up to the

standby Mediation Server so its configuration can be quickly imported to the standby when failover is

needed.

To mitigate issues related to data integrity, loss, and potential duplication, the Mediation Server and

Database Server co-resident at a site are considered paired and are restricted to communicating with

each other; that is, the Mediation Serve at Site A only communicates with the Database Server at Site A

and is not permitted to communicate with the Database Server at Site B if the Database Server at Site A

fails. Total or partial loss of any active management cluster component may trigger the failover

procedure, in which the entire cluster is failed over to the secondary warm standby cluster. The

secondary cluster then assumes and retains the active role. The former secondary server pair, once

repaired, assumes the warm standby mode until a failover event occurs, when the roles will again be

reversed using the failover procedure on page 9.

Depending on the error condition observed, triggering the failover procedure does not necessarily mean

that PolicyGuru System operations have been disrupted. The procedure can be invoked as a

preventative measure when certain issues are observed, in addition to more serious faults.

SecureLogix has Python scripts available to perform the backup and synchronization operations on the

standby management cluster. Instructions for their installation and use are provided in this guide.

Contact SecureLogix Technical Support to obtain copies of the scripts. Their installation, function, and

use is described below.

Note: For general system backup procedures for maintaining a complete backup of all PolicyGuru

Solution components, refer to the PolicyGuru® Meta-Policy Controller Backup and Recovery Guide. This

document applies specifically to implementing the Enhanced Availability deployment model.

Page 4 of 21

Loss of Information During Recovery
The recovery procedures described in this document will not restore a PolicyGuru System to the point of

failure, but rather to the point of the last backup execution. Therefore, a system recovered with this

procedure will lose call data and any system configuration changes that occurred after the backup was

executed. SecureLogix recommends running the scripts at least daily. Administrators desiring a shorter

Recovery Point Objective should execute the scripts more frequently.

Administrators who need backup and recovery strategies that do not lose data or that minimize data

loss to the greatest extent possible will need to implement alternative backup and recovery strategies

that are beyond the scope of this document and not supported by SecureLogix.

Database Synchronization Script

Overview
A database backup and synchronization script named pgsync.py is scheduled as a cron job to run at the

same time on both the active and standby database servers. When the script runs on the active

database server, it exports the database, creates a backup tar file, and then copies the tar file to the

standby database. A copy of the backup remains on the active database server. A configurable number

of previous backups are retained on each server, with the oldest backup deleted when the configured

number is exceeded when the script runs. When the script runs on the standby database, it checks for

the presence of a new backup file. If one is found, it waits a configurable number of minutes after the

backup file stops growing (by default, 5 minutes), and then untars it, starts the psql database (not the

ngp service),imports the backup into the database, and then stops the psql database when the import

completes. It then checks to see if the number of existing backups exceeds the configured number of

backups to retain and if so, deletes the oldest backup. This process ensures that the standby database

remains synched to the last active database backup. The script determines which is the active database

and which is the standby by determining whether the ngp service is running on the system. Therefore, it

is important to ensure that the ngp service remains off on the standby database server by setting

chkconfig off.

It is recommended that the script be scheduled to run at least daily. A copy of this script can be found in

“Appendix B: Database Synchronization Script” on page 12.

Workflow Diagram
Figure 1 illustrates the workflow the script executes.

Page 5 of 21

Figure 1: Database Synchronization Script Workflow

Database Synchronization Script Installation
To install the database synchronization script

1. Log in to each database and become the postgres user:

$ sudo su – postgres

2. Create or modify the .bash_profile in the postgres home directory at /opt/ngp/pgsql-

9.3/postgres/.bash_profile:

.bash_profile

User specific environment and startup programs

LD_LIBRARY_PATH=$HOME/lib

PATH=$PATH:$HOME/bin

PGDATA=/opt/ngp/db

export PATH

export LD_LIBRARY_PATH

export PGDATA

3. Create a directory named pgbackups/backups in the postgres home directory:

$ mkdir -p ~/pgbackups/backups

Page 6 of 21

4. Copy the script to the pgbackups directory you created in the postgres home directory and make

sure it is owner executable:

$ chmod u+x ~/pgbackups/pgsync.py

5. Create ssh keys for the postgres user:

$ ssh-keygen

use defaults, no password

6. Copy the public keys from one server to the other and place them in the /opt/ngp/pgsql-

9.3//.ssh/authorized_keys file and chmod the file to 400.

7. Create a crontab entry to run at the same time on each of the 2 database servers:

$ crontab -e

0 6 * * * . $HOME/.bash_profile; /opt/ngp/pgsql-

9.3/pgbackups/pgsync.py [-j JOBS] [-t TIMEOUT] [-b BACKUPS] OTHER-

DATABASE

Where:

 -t TIMEOUT is the number of seconds for new import wait
 -j JOBS is number of jobs to spawn for pg_dump
 -b BACKUPS is the number of backups to keep
 OTHER-DATABASE is the IP address and path of the backup directory on the other database
server

To view the pgsync help file, use the following command:

pgsync [-h] [-t TIMEOUT] [-j JOBS] [-b BACKUPS] REMOTE_HOST

 -t # timeout(seconds) for new import wait
 -j # number of jobs to spawn for pg_dump
 -b # number of backups to keep
 -h this message

8. A log file is created at /pgbackups/pgsync.log when the script runs and then appended on each

subsequent run. It is recommended that you use log rotation configuration to manage the log size.

Mediation Server Backup Script

Overview
A Python script named ngpsync.py backs up the active Mediation Server configuration files and copies

them to a backup directory on the standby Mediation Server. This script is scheduled as a cron job to run

at the same time on both the active and standby Mediation Server. When the script runs on the active

Mediation Server, it creates a backup tar file of the ngp directory (excluding unnecessary files and the

system-specific files in /config/network), adds the .m2 directory (which contains Rule assets) to the tar

file, and then copies the tar file to the standby Mediation Server. A copy of the backup file remains on

Page 7 of 21

the active Mediation Server. A configurable number of previous backups are retained on each server,

with the oldest backup deleted when the configured number is exceeded when the script runs.

Unlike the database, the active Mediation Server backup is not automatically synchronized to the

standby Mediation Server. It is imported during the failover procedure in case its configuration or other

errors caused the failure. Importing the backup takes only a few minutes during the failover procedure

and you can choose which backup to import.

It is recommended that the script be scheduled to run at least daily. A copy of this script can be found in

“Appendix C: Mediation Server Backup Script” on page 18.

Workflow Diagram
Figure 2 illustrates the workflow the script executes.

Figure 2: Mediation Server Backup Script Workflow

Workflow details:

The script checks ngp service status and executes active device operations if running, or standby

device operation if not running, as outlined below:

Page 8 of 21

Active device operations:

a. tar czf ngpbackupTIMESTAMP.tgz -X exclusionsfile -C /opt ngp

Where exclusionsfile:

 jboss-as-7.2.0.Final/standalone/data

 jboss-as-7.2.0.Final/standalone/tmp

 jboss-as-7.2.0.Final/standalone/log

 config/network

 openldap/var

 log

 *.log

 *.pyc

 *.pyo

 *.gitignore

b. tar rzf ngpbackupTIMESTAMP.tgz -C /root .m2

c. rsync -a ngpbackupTIMESTAMP.tgz root@remote:/opt/ngpbackups/backups/

d. Remove oldest backup if more than the configured limit exist.

Standby device operation:

 Remove oldest backup if more than the configured limit exist.

Mediation Server Backup Script Installation
To install the Mediation Server backup script

1. Log in to each Mediation Server and become root:

$ sudo -i

2. Create the directory path /opt/ngpbackups/backups:

mkdir -p /opt/ngpbackups/backups

3. Change to the /opt/ngpbackups directory:

cd /opt/ngpbackups

4. Copy the script to /opt/ngpbackups/ngpsync.py and make sure it is owner executable:

Page 9 of 21

chmod u+x ngpsync.py

5. Ensure PermitRootLogin without-password is set in sshd configuration:

$ grep PermitRootLogin /etc/ssh/sshd_config
#PermitRootLogin no
PermitRootLogin without-password

Note: if you change the sshd configuration, you must restart or reload sshd:

6. Create ssh keys to the opposing server if none exist:

ssh-keygen

use defaults, no password

7. Copy the public keys from one server to the other and put them in the /.ssh/authorized_keys
file and chmod the file to 400.

8. Create a cron entry to run at the same time on each Mediation Server:

vi /etc/cron.d/ngpsync
0 6 * * * = every day 0600 UTC = 0100 CST
0 6 * * * root . $HOME/.bash_profile; /opt/ngpbackups/ngpsync.py

[-b BACKUPS] OTHER-MEDIATION

Where:

 -b BACKUPS is the number of backups to keep
 -OTHER-MEDIATION is the IP address and path to the backup directory on the standby
Mediation Server.

9. To view the ngpsync help file, use the following command:

ngpsync [-h] [-b BACKUPS] REMOTE_HOST

 -b # number of backups to keep
 -h this message

10. A log file is created at /opt/ngpbackups/ngpsync.log the first time the script runs and then
appended on each subsequent run. It is recommended that you use log rotation configuration to
manage the log size.

Failover Procedure
For purposes of the procedure below, the active Mediation Server (MS1) and active Database Server

(DB1) are located at Data Center A and the secondary warm-standby Mediation Server (MS2) and

Page 10 of 21

Database Server (DB2) are located at Data Center B and the database has been kept synchronized per

the Backup and Restore instructions in this document.

To fail over the active management cluster to the standby cluster

1. Stop the ngp service on the active Mediation Server (MS1) and Database Server (DB1):

service ngp stop 5

2. Prevent the ngp service on the failed servers from starting on reboot by executing the following

command on MS1 and DB1::

chkconfig ngp off

3. SSH to the standby Mediation Server.

4. Change directory to /opt/ngpbackups/backups:

$ cd /opt/ngpbackups/backups
$ ls -l
ngpbackupTIMESTAMP1.tgz
ngpbackupTIMESTAMP2.tgz

5. Restore from the selected backup:

$ tar xzf ngpbackupTIMESTAMP2.tgz -C /opt --exclude=.m2
$ tar xzf ngpbackupTIMESTAMP2.tgz -C /root --exclude=ngp

6. Start the ngp service on the secondary Database Server (DB2):

service ngp start

7. After startup completes, verify that all processes are green:

service ngp status

8. Enable chkconfig of the ngp process on DB2 to allow automatic ngp startup on system startup:

chkconfig ngp on

9. Start the ngp service on the secondary Mediation Server (MS2):

service ngp start

10. After startup completes, verify that all processes are green:

service ngp status

11. Enable chkconfig of the ngp process on MS2 to allow automatic ngp startup on system startup:
chkconfig ngp on

The former secondary server pair (MS2 and DB2) are now the active management cluster.

Page 11 of 21

12. Redirect all ENUM Servers and Metadata Probes to the now-active Mediation Server: (MS2).

a. SSH to each ENUM Server and Metadata Probe.

b. On each system, edit /opt/ngp/config/network/jboss_mediation_ip to reflect the IP

address of MS2.

c. On each ENUM Server, optionally reset the SEP policy. This is recommended if SEP policy

changes have occurred since the last time Mediation Server configuration backup and

Database backup were performed. Resetting the SEP policy will allow the ENUM Servers to

most easily sync to the current SEP Policy configured on MS2.To reset SEP Policy, issue the

following command on each ENUM server:

sqlite3 /opt/ngp/bin/enum/config.db 'update items set value = "1"

where name = "policyReset";'

d. On each system, restart the ngp service to effect the change.

service ngp stop 5

service ngp start

13. Log in to MS2 and verify functionality.

14. Perform any configuration or policy changes that were previously performed on MS1 since the last

configuration and database backup (and thus are not present on MS2).

15. Commit SEP Policy and Build and Deploy CEP Policy.

Log and call activity locally cached on the ENUM Servers and Metadata Probes during the failover

procedure is automatically uploaded when communication with the active Mediation Server is

established.

It is recommended that recovery operation be performed as soon as possible on MS1 and DB1 to restore

them to an operational state so that they can be put back into service functioning as the warm-standby

pair to support a future failover event.

Page 12 of 21

Appendix B: Database Synchronization Script
#!/opt/ngp/lib/python/bin/python

import os
import sys
import time
import shutil
import tarfile
import subprocess as sp
from glob import glob

help message
def show_help(e=0):
 print 'usage: pgsync [-h] [-t TIMEOUT] [-j JOBS] [-b BACKUPS] REMOTE_HOST'
 print
 print "\t-t #\ttimeout(seconds) for new import wait"
 print "\t-j #\tnumber of jobs to spawn for pg_dump"
 print "\t-b #\tnumber of backups to keep"
 print "\t-h\tthis message"
 print
 sys.exit(e)

try:
 REMOTE_HOST = sys.argv[-1]
except:
 show_help(1)

BASE_DIR = '/'.join([os.getenv('HOME'), 'pgbackups'])
BACKUPS_DIR = '/'.join([BASE_DIR, 'backups'])
LOG_FILE = '/'.join([BASE_DIR, 'pgsync.log'])

logging function for the pgsync process
def dumplogger(level, msg):
 timestamp = time.strftime('%Y-%m-%d %H:%M:%S')
 logmsg = ''.join([timestamp, ' pgsync: ', level, ': ', msg, '\n'])
 with open(LOG_FILE, 'a+') as log:
 log.write(logmsg)
 #print logmsg.rstrip()

return the time in seconds from start to now as a string
def get_runtime(start):
 runtime = int(time.time() - start)
 return str(runtime)

execute shell commands, return the exit-code, and log errors
def run_command(cmd):
 s = sp.Popen(cmd, stdout=sp.PIPE, stderr=sp.PIPE)
 output, error = s.communicate()
 rc = s.returncode
 # if an error occurs, log it
 if len(error):
 dumplogger('ERROR', error.rstrip())

Page 13 of 21

 return rc

check service status and return the return code from the command
def check_service_status(service):
 cmd = ['/sbin/service', service ,'status']
 result = run_command(cmd)
 return result

create the pg_dump command and execute it
def execute_pg_dump(jobs):
 dump = '.'.join(['pgbackup', time.strftime('%Y%m%d%H%M%S')])
 dumpPath = '/'.join([BACKUPS_DIR, dump])
 cmd = 'pg_dump ngp -F directory -f'.split()
 cmd.append(dumpPath)
 # set jobs number if more than 1
 if jobs > 1:
 cmd.append('-j')
 cmd.append(str(jobs))
 result = run_command(cmd)
 if result != 0:
 return result
 return dump

tarball dump directory and remove the originals
def tar_dumpdir(dump):
 zname = '.'.join([dump, 'tgz'])
 os.chdir(BACKUPS_DIR)
 tar = tarfile.open(zname, 'w:gz')
 tar.add(dump)
 tar.close()
 shutil.rmtree(dump)
 return zname

use rsync to sync backup directories
def sync_backups(zname):
 dumplogger('INFO', ': '.join(['syncing backups with', REMOTE_HOST]))
 user = os.getenv('USER')
 login = '@'.join([user, REMOTE_HOST])
 destPath = ':'.join([login, BACKUPS_DIR])
 rsync = ['rsync', '-a', zname, destPath]
 result = run_command(rsync)
 dumplogger('INFO', 'sync completed')
 return result

maintain old backups by options
def maintain_backups(limit):
 globPath = '/'.join([BACKUPS_DIR, 'pgbackup*.tgz'])
 backups = sorted(glob(globPath), reverse=True)
 removed = 0
 for i, backup in enumerate(backups):
 if i >= int(limit):
 os.remove(backup)
 removed += 1
 return removed

Page 14 of 21

wait for a new import from the active database
def wait_for_import(timeout):
 dumplogger('INFO', 'waiting ' + str(timeout) + ' seconds for new import')
 timeoutTime = time.time() + timeout
 globPath = '/'.join([BACKUPS_DIR, '*'])
 numBaksExist = len(glob(globPath))
 numBaks = numBaksExist
 while numBaksExist <= numBaks:
 if time.time() > timeoutTime:
 return 1
 time.sleep(5)
 numBaksExist = len(glob(globPath))
 return 0

start/stop DB using pg_ctl
def pgctl_db(action):
 dumplogger('INFO', ' '.join([action , 'database']))
 cmd = ['pg_ctl', action]
 for i in '-s -w -t 60 -l'.split():
 cmd.append(i)
 cmd.append(LOG_FILE)
 result = run_command(cmd)
 if result != 0:
 dumplogger('ERROR', ' '.join(['database failed to', action]))
 return result

return the file path for the latest pg dump
def get_latest_dump():
 globPath = '/'.join([BACKUPS_DIR, 'pgbackup*'])
 latest = sorted(glob(globPath), reverse=True)[0]
 return latest

wait for new import to complete its transfer
def wait_for_entire_import(zdump):
 lastSize = os.stat(zdump).st_size
 count = 0
 while count < 5:
 time.sleep(60)
 newSize = os.stat(zdump).st_size
 if newSize > lastSize:
 lastSize = newSize
 count = 0
 else:
 count += 1

unzip and expand tar of the latest backup
def decompress_backup(zdump):
 tar = tarfile.open(zdump, 'r:gz')
 tar.extractall(path=BACKUPS_DIR)
 tar.close()
 return zdump[:-4]

execute the import/pg_restore

Page 15 of 21

def import_latest_dump(dump, jobs):
 cmd = ['pg_restore', '-d', 'ngp']
 if jobs > 1:
 cmd.append('-j')
 cmd.append(str(jobs))
 cmd.append(dump)
 result = run_command(cmd)
 shutil.rmtree(dump)
 return result

drop and create the ngp database
def resetDB():
 dropcmd = ['dropdb', 'ngp']
 result = run_command(dropcmd)
 if result != 0:
 dumplogger('ERROR', 'failed to drop ngp database')
 createcmd = ['createdb','ngp']
 result = run_command(createcmd)
 if result != 0:
 dumplogger('ERROR', 'failed to create ngp database')
 sys.exit(1)

run on standby database
def run_standby(timeout, jobs):
 if wait_for_import(timeout) != 0:
 dumplogger('ERROR', 'timeout waiting for new import')
 return 1
 zdump = get_latest_dump()
 dumplogger('INFO', 'waiting for new import ' + str(zdump) + ' to complete
transfer')
 wait_for_entire_import(zdump)
 dumplogger('INFO', 'decompressing backup')
 dump = decompress_backup(zdump)
 dumplogger('INFO', 'reset ngp database')
 resetDB()
 dumplogger('INFO', 'importing ngp database from latest backup')
 result = import_latest_dump(dump, jobs)
 if result != 0:
 dumplogger('ERROR', 'latest import failed')
 return 1
 dumplogger('INFO', 'latest import succeeded')
 return 0

go through standby operations
def standby_ops(timeout, backups, jobs):
 dumplogger('INFO', 'running standby device operations')
 dbStarted = pgctl_db('start')
 if dbStarted != 0:
 return 1
 result = run_standby(timeout, jobs)
 if result == 0:
 maintain_backups(backups)
 return result

Page 16 of 21

build dict from args
def get_opts():
 if 'python' in sys.argv[0]:
 args = sys.argv[1:]
 args = sys.argv
 if len(args) % 2:
 dumplogger('ERROR', 'command not valid')
 show_help(e=1)
 pargs = ['t', 'j', 'b', 'h']
 opts = {'timeout': 3600, 'jobs': 1, 'backups': 14}
 for i, a in enumerate(args):
 a = a.strip('-')
 if a in pargs:
 if a == 'h':
 show_help()
 elif a == 't':
 opts['timeout'] = int(args[i+1])
 elif a == 'j':
 opts['jobs'] = int(args[i+1])
 elif a == 'b':
 opts['backups'] = int(args[i+1])
 return opts

main function
def main():
 try:
 opts = get_opts()
 except:
 show_help(1)

 optsstr = ', '.join([': '.join([k, str(opts.get(k))]) for k in opts])
 dumplogger('INFO', ' '. join(['starting pgsync with options', optsstr]))

 # check if NGP is running on this system
 if check_service_status('ngp') != 0:
 result = 1
 try:
 result = standby_ops(opts.get('timeout'), opts.get('backups'),
opts.get('jobs'))
 except:
 result = 1
 dumplogger('ERROR', 'standby system failed to import')
 finally:
 if pgctl_db('status') == 0:
 pgctl_db('stop')
 sys.exit(result)

 dumplogger('INFO', 'running active device operations')
 dumplogger('INFO', 'delaying start for 1 minute')
 time.sleep(60)
 dumplogger('INFO', 'starting dump of database')
 pgdump = execute_pg_dump(opts.get('jobs'))
 if type(pgdump) == int:
 sys.exit(1)

Page 17 of 21

 dumplogger('INFO', 'database dump created: ' + str(pgdump))
 dumplogger('INFO', 'tarballing dump directory')
 backup = tar_dumpdir(pgdump)
 rmbaks = maintain_backups(opts.get('backups'))
 if rmbaks > 0:
 msg = ' '.join(['maintenance removed', str(rmbaks), 'backup(s)'])
 dumplogger('INFO', msg)
 dumplogger('INFO', 'sending latest backup ' + str(backup) + ' to standby
device')
 sync = sync_backups(backup)

if __name__ == '__main__':
 try:
 main()
 except Exception, e:
 msg = ': '.join(['main failed to run successfully', e.message])
 dumplogger('ERROR', msg)
 sys.exit(1)

Page 18 of 21

Appendix C: Mediation Server Backup Script
#!/usr/bin/python

import os
import sys
import time
import tarfile
from glob import glob
import subprocess as sp

help message
def show_help(e=0):
 print 'usage: ngpsync [-h] [-b BACKUPS] REMOTE_HOST'
 print
 print "\t-b #\tnumber of backups to keep"
 print "\t-h\tthis message"
 print
 sys.exit(e)

REMOTE_HOST = sys.argv[-1]
BASE_DIR = '/opt/ngpbackups'
BACKUPS_DIR = '/'.join([BASE_DIR, 'backups'])
LOG_FILE = '/'.join([BASE_DIR, 'ngpsync.log'])
EXCLUDE_DIRS = [
 'jboss-as-7.2.0.Final/standalone/data',
 'jboss-as-7.2.0.Final/standalone/tmp',
 'jboss-as-7.2.0.Final/standalone/log',
 'config/network',
 'openldap/var',
 'log'
]
EXCLUDE_FILES = [
 '.log',
 '.gitignore',
 '.pyc',
 '.pyo'
]

logging function for the ngp sync process
def synclogger(level, msg):
 timestamp = time.strftime('%Y-%m-%d %H:%M:%S')
 logmsg = ''.join([timestamp, ' ngpsync: ', level, ': ', msg, '\n'])
 with open(LOG_FILE, 'a+') as log:
 log.write(logmsg)
 #print logmsg.rstrip()

directory match exclusions
def exclude_dirs(filepath):
 for i in EXCLUDE_DIRS:
 end = len(i)
 if filepath[:end] == i:

Page 19 of 21

 return True
 return False

file match exclusions
def exclude_files(filename):
 for i in EXCLUDE_FILES:
 begin = 0 - len(i)
 if filename[begin:] == i:
 return True
 return False

filter out excluded directories and files
def exclusions(filename):
 filename = filename[4:]
 if any((exclude_dirs(filename), exclude_files(filename))):
 return True
 return False

tarball the /opt/ngp directory into BASE_DIR
def create_backup():
 os.chdir('/opt')
 timestamp = time.strftime('%Y%m%d%H%M%S')
 backupName = ''.join([BACKUPS_DIR, '/ngpbackup', timestamp, '.tgz'])
 backup = tarfile.open(backupName, 'w:gz')
 backup.add('ngp', exclude=exclusions)
 os.chdir('/root')
 backup.add('.m2')
 backup.close()
 os.chdir(BASE_DIR)
 return backup.name

execute shell commands, return the exit-code, and log errors
def run_command(cmd):
 s = sp.Popen(cmd, stdout=sp.PIPE, stderr=sp.PIPE)
 output, error = s.communicate()
 rc = s.returncode
 # if an error occurs, log it
 if len(error):
 synclogger('ERROR', error.rstrip())
 return rc

rsync latest backup to the standby mediation server's backup directory
def rsync_latest(latest):
 remoteHost = '@'.join([os.getenv('USER'), REMOTE_HOST])
 remotePath = ':'.join([remoteHost, BACKUPS_DIR])
 cmd = ['/usr/bin/rsync', '-a', latest, remotePath]
 rc = run_command(cmd)
 return rc

check service status and return the return code from the command
def check_service_status(service):
 cmd = ['/sbin/service', service ,'status']
 result = run_command(cmd)
 return result

Page 20 of 21

remove oldest backups if number of backups exceeds maintenance input
def maintenance(limit):
 backups = sorted(glob('/'.join([BACKUPS_DIR, '*.tgz'])), reverse=True)
 count = 0
 for i, backup in enumerate(backups):
 if i >= limit:
 os.remove(backup)
 count += 1
 return count

build dict from args
def get_opts():
 if 'python' in sys.argv[0]:
 args = sys.argv[1:]
 else:
 args = sys.argv
 if len(args) < 2:
 show_help(1)
 pargs = ['b', 'h']
 opts = {'backups': 14}
 for i, a in enumerate(args):
 a = a.strip('-')
 if a in pargs:
 if a == 'h':
 show_help()
 elif a == 'b':
 opts['backups'] = int(args[i+1])
 return opts

run backup and sync on active server
def run_backup():
 synclogger('[INFO]', 'starting ngp backup')
 latest = create_backup()
 size = str(os.stat(latest).st_size)
 synclogger('[INFO]', 'backup complete: ' + latest + ' : ' + size + ' bytes')
 synclogger('[INFO]', 'starting backup sync')
 rsync_latest(latest)
 synclogger('[INFO]', 'backup sync complete')

run maintenance
def main():

 ngp = check_service_status('ngp')

 if ngp == 0:
 run_backup()
 else:
 opts['backups'] -= 1

 synclogger('[INFO]', 'performing backup maintenance')
 removed = maintenance(opts.get('backups'))
 synclogger('[INFO]', ' '.join(['removed', str(removed), 'backups']))

Page 21 of 21

if __name__ == '__main__':

 opts = None
 try:
 opts = get_opts()
 except:
 sys.exit(1)

 main()

		Introduction

		Loss of Information During Recovery

		Database Synchronization Script

		Overview

		Workflow Diagram

		Database Synchronization Script Installation

		Mediation Server Backup Script

		Overview

		Workflow Diagram

		Mediation Server Backup Script Installation

		Failover Procedure

		Appendix B: Database Synchronization Script

		Appendix C: Mediation Server Backup Script

PolicyGuru System Enhanced Availability Guide_7212017.pdf

PolicyGuru®

Meta-Policy Controller

Enhanced Availability Guide

Page 2 of 21

Contents

Introduction .. 3

Loss of Information During Recovery.. 4

Database Synchronization Script .. 4

Overview ... 4

Workflow Diagram .. 4

Database Synchronization Script Installation ... 5

Mediation Server Backup Script .. 6

Overview ... 6

Workflow Diagram .. 7

Mediation Server Backup Script Installation ... 8

Failover Procedure .. 9

Appendix B: Database Synchronization Script .. 12

Appendix C: Mediation Server Backup Script ... 18

Page 3 of 21

PolicyGuru® System Enhanced Availability
Model
Introduction
The PolicyGuru Solution can be deployed in a distributed Enhanced Availability model to allow for rapid

system recovery in the event of active management cluster failure. In this configuration model, you

deploy two Mediation Server and Database Server pairs at separate sites as active and warm-standby

management cluster pairs. These sites can be in different locations on the same campus or in different

locations across the country or continent. Global deployments where the two locations are on different

continents are not supported.

One Mediation Server/Database Server pair is the active pair at any time to support normal operations,

while the secondary pair is in warm-standby mode, ready to be placed in the active role if normal

operations of the currently active pair are impaired. The secondary servers are powered on but are not

active at the PolicyGuru application level. The standby Database Server is regularly synchronized with

the active Database Server and the active Mediation Server configuration is regularly backed up to the

standby Mediation Server so its configuration can be quickly imported to the standby when failover is

needed.

To mitigate issues related to data integrity, loss, and potential duplication, the Mediation Server and

Database Server co-resident at a site are considered paired and are restricted to communicating with

each other; that is, the Mediation Serve at Site A only communicates with the Database Server at Site A

and is not permitted to communicate with the Database Server at Site B if the Database Server at Site A

fails. Total or partial loss of any active management cluster component may trigger the failover

procedure, in which the entire cluster is failed over to the secondary warm standby cluster. The

secondary cluster then assumes and retains the active role. The former secondary server pair, once

repaired, assumes the warm standby mode until a failover event occurs, when the roles will again be

reversed using the failover procedure on page 9.

Depending on the error condition observed, triggering the failover procedure does not necessarily mean

that PolicyGuru System operations have been disrupted. The procedure can be invoked as a

preventative measure when certain issues are observed, in addition to more serious faults.

SecureLogix has Python scripts available to perform the backup and synchronization operations on the

standby management cluster. Instructions for their installation and use are provided in this guide.

Contact SecureLogix Technical Support to obtain copies of the scripts. Their installation, function, and

use is described below.

Note: For general system backup procedures for maintaining a complete backup of all PolicyGuru

Solution components, refer to the PolicyGuru® Meta-Policy Controller Backup and Recovery Guide. This

document applies specifically to implementing the Enhanced Availability deployment model.

Page 4 of 21

Loss of Information During Recovery
The recovery procedures described in this document will not restore a PolicyGuru System to the point of

failure, but rather to the point of the last backup execution. Therefore, a system recovered with this

procedure will lose call data and any system configuration changes that occurred after the backup was

executed. SecureLogix recommends running the scripts at least daily. Administrators desiring a shorter

Recovery Point Objective should execute the scripts more frequently.

Administrators who need backup and recovery strategies that do not lose data or that minimize data

loss to the greatest extent possible will need to implement alternative backup and recovery strategies

that are beyond the scope of this document and not supported by SecureLogix.

Database Synchronization Script

Overview
A database backup and synchronization script named pgsync.py is scheduled as a cron job to run at the

same time on both the active and standby database servers. When the script runs on the active

database server, it exports the database, creates a backup tar file, and then copies the tar file to the

standby database. A copy of the backup remains on the active database server. A configurable number

of previous backups are retained on each server, with the oldest backup deleted when the configured

number is exceeded when the script runs. When the script runs on the standby database, it checks for

the presence of a new backup file. If one is found, it waits a configurable number of minutes after the

backup file stops growing (by default, 5 minutes), and then untars it, starts the psql database (not the

ngp service),imports the backup into the database, and then stops the psql database when the import

completes. It then checks to see if the number of existing backups exceeds the configured number of

backups to retain and if so, deletes the oldest backup. This process ensures that the standby database

remains synched to the last active database backup. The script determines which is the active database

and which is the standby by determining whether the ngp service is running on the system. Therefore, it

is important to ensure that the ngp service remains off on the standby database server by setting

chkconfig off.

It is recommended that the script be scheduled to run at least daily. A copy of this script can be found in

“Appendix B: Database Synchronization Script” on page 12.

Workflow Diagram
Figure 1 illustrates the workflow the script executes.

Page 5 of 21

Figure 1: Database Synchronization Script Workflow

Database Synchronization Script Installation
To install the database synchronization script

1. Log in to each database and become the postgres user:

$ sudo su – postgres

2. Create or modify the .bash_profile in the postgres home directory at /opt/ngp/pgsql-

9.3/postgres/.bash_profile:

.bash_profile

User specific environment and startup programs

LD_LIBRARY_PATH=$HOME/lib

PATH=$PATH:$HOME/bin

PGDATA=/opt/ngp/db

export PATH

export LD_LIBRARY_PATH

export PGDATA

3. Create a directory named pgbackups/backups in the postgres home directory:

$ mkdir -p ~/pgbackups/backups

Page 6 of 21

4. Copy the script to the pgbackups directory you created in the postgres home directory and make

sure it is owner executable:

$ chmod u+x ~/pgbackups/pgsync.py

5. Create ssh keys for the postgres user:

$ ssh-keygen

use defaults, no password

6. Copy the public keys from one server to the other and place them in the /opt/ngp/pgsql-

9.3//.ssh/authorized_keys file and chmod the file to 400.

7. Create a crontab entry to run at the same time on each of the 2 database servers:

$ crontab -e

0 6 * * * . $HOME/.bash_profile; /opt/ngp/pgsql-

9.3/pgbackups/pgsync.py [-j JOBS] [-t TIMEOUT] [-b BACKUPS] OTHER-

DATABASE

Where:

 -t TIMEOUT is the number of seconds for new import wait
 -j JOBS is number of jobs to spawn for pg_dump
 -b BACKUPS is the number of backups to keep
 OTHER-DATABASE is the IP address and path of the backup directory on the other database
server

To view the pgsync help file, use the following command:

pgsync [-h] [-t TIMEOUT] [-j JOBS] [-b BACKUPS] REMOTE_HOST

 -t # timeout(seconds) for new import wait
 -j # number of jobs to spawn for pg_dump
 -b # number of backups to keep
 -h this message

8. A log file is created at /pgbackups/pgsync.log when the script runs and then appended on each

subsequent run. It is recommended that you use log rotation configuration to manage the log size.

Mediation Server Backup Script

Overview
A Python script named ngpsync.py backs up the active Mediation Server configuration files and copies

them to a backup directory on the standby Mediation Server. This script is scheduled as a cron job to run

at the same time on both the active and standby Mediation Server. When the script runs on the active

Mediation Server, it creates a backup tar file of the ngp directory (excluding unnecessary files and the

system-specific files in /config/network), adds the .m2 directory (which contains Rule assets) to the tar

file, and then copies the tar file to the standby Mediation Server. A copy of the backup file remains on

Page 7 of 21

the active Mediation Server. A configurable number of previous backups are retained on each server,

with the oldest backup deleted when the configured number is exceeded when the script runs.

Unlike the database, the active Mediation Server backup is not automatically synchronized to the

standby Mediation Server. It is imported during the failover procedure in case its configuration or other

errors caused the failure. Importing the backup takes only a few minutes during the failover procedure

and you can choose which backup to import.

It is recommended that the script be scheduled to run at least daily. A copy of this script can be found in

“Appendix C: Mediation Server Backup Script” on page 18.

Workflow Diagram
Figure 2 illustrates the workflow the script executes.

Figure 2: Mediation Server Backup Script Workflow

Workflow details:

The script checks ngp service status and executes active device operations if running, or standby

device operation if not running, as outlined below:

Page 8 of 21

Active device operations:

a. tar czf ngpbackupTIMESTAMP.tgz -X exclusionsfile -C /opt ngp

Where exclusionsfile:

 jboss-as-7.2.0.Final/standalone/data

 jboss-as-7.2.0.Final/standalone/tmp

 jboss-as-7.2.0.Final/standalone/log

 config/network

 openldap/var

 log

 *.log

 *.pyc

 *.pyo

 *.gitignore

b. tar rzf ngpbackupTIMESTAMP.tgz -C /root .m2

c. rsync -a ngpbackupTIMESTAMP.tgz root@remote:/opt/ngpbackups/backups/

d. Remove oldest backup if more than the configured limit exist.

Standby device operation:

 Remove oldest backup if more than the configured limit exist.

Mediation Server Backup Script Installation
To install the Mediation Server backup script

1. Log in to each Mediation Server and become root:

$ sudo -i

2. Create the directory path /opt/ngpbackups/backups:

mkdir -p /opt/ngpbackups/backups

3. Change to the /opt/ngpbackups directory:

cd /opt/ngpbackups

4. Copy the script to /opt/ngpbackups/ngpsync.py and make sure it is owner executable:

Page 9 of 21

chmod u+x ngpsync.py

5. Ensure PermitRootLogin without-password is set in sshd configuration:

$ grep PermitRootLogin /etc/ssh/sshd_config
#PermitRootLogin no
PermitRootLogin without-password

Note: if you change the sshd configuration, you must restart or reload sshd:

6. Create ssh keys to the opposing server if none exist:

ssh-keygen

use defaults, no password

7. Copy the public keys from one server to the other and put them in the /.ssh/authorized_keys
file and chmod the file to 400.

8. Create a cron entry to run at the same time on each Mediation Server:

vi /etc/cron.d/ngpsync
0 6 * * * = every day 0600 UTC = 0100 CST
0 6 * * * root . $HOME/.bash_profile; /opt/ngpbackups/ngpsync.py

[-b BACKUPS] OTHER-MEDIATION

Where:

 -b BACKUPS is the number of backups to keep
 -OTHER-MEDIATION is the IP address and path to the backup directory on the standby
Mediation Server.

9. To view the ngpsync help file, use the following command:

ngpsync [-h] [-b BACKUPS] REMOTE_HOST

 -b # number of backups to keep
 -h this message

10. A log file is created at /opt/ngpbackups/ngpsync.log the first time the script runs and then
appended on each subsequent run. It is recommended that you use log rotation configuration to
manage the log size.

Failover Procedure
For purposes of the procedure below, the active Mediation Server (MS1) and active Database Server

(DB1) are located at Data Center A and the secondary warm-standby Mediation Server (MS2) and

Page 10 of 21

Database Server (DB2) are located at Data Center B and the database has been kept synchronized per

the Backup and Restore instructions in this document.

To fail over the active management cluster to the standby cluster

1. Stop the ngp service on the active Mediation Server (MS1) and Database Server (DB1):

service ngp stop 5

2. Prevent the ngp service on the failed servers from starting on reboot by executing the following

command on MS1 and DB1::

chkconfig ngp off

3. SSH to the standby Mediation Server.

4. Change directory to /opt/ngpbackups/backups:

$ cd /opt/ngpbackups/backups
$ ls -l
ngpbackupTIMESTAMP1.tgz
ngpbackupTIMESTAMP2.tgz

5. Restore from the selected backup:

$ tar xzf ngpbackupTIMESTAMP2.tgz -C /opt --exclude=.m2
$ tar xzf ngpbackupTIMESTAMP2.tgz -C /root --exclude=ngp

6. Start the ngp service on the secondary Database Server (DB2):

service ngp start

7. After startup completes, verify that all processes are green:

service ngp status

8. Enable chkconfig of the ngp process on DB2 to allow automatic ngp startup on system startup:

chkconfig ngp on

9. Start the ngp service on the secondary Mediation Server (MS2):

service ngp start

10. After startup completes, verify that all processes are green:

service ngp status

11. Enable chkconfig of the ngp process on MS2 to allow automatic ngp startup on system startup:
chkconfig ngp on

The former secondary server pair (MS2 and DB2) are now the active management cluster.

Page 11 of 21

12. Redirect all ENUM Servers and Metadata Probes to the now-active Mediation Server: (MS2).

a. SSH to each ENUM Server and Metadata Probe.

b. On each system, edit /opt/ngp/config/network/jboss_mediation_ip to reflect the IP

address of MS2.

c. On each ENUM Server, optionally reset the SEP policy. This is recommended if SEP policy

changes have occurred since the last time Mediation Server configuration backup and

Database backup were performed. Resetting the SEP policy will allow the ENUM Servers to

most easily sync to the current SEP Policy configured on MS2.To reset SEP Policy, issue the

following command on each ENUM server:

sqlite3 /opt/ngp/bin/enum/config.db 'update items set value = "1"

where name = "policyReset";'

d. On each system, restart the ngp service to effect the change.

service ngp stop 5

service ngp start

13. Log in to MS2 and verify functionality.

14. Perform any configuration or policy changes that were previously performed on MS1 since the last

configuration and database backup (and thus are not present on MS2).

15. Commit SEP Policy and Build and Deploy CEP Policy.

Log and call activity locally cached on the ENUM Servers and Metadata Probes during the failover

procedure is automatically uploaded when communication with the active Mediation Server is

established.

It is recommended that recovery operation be performed as soon as possible on MS1 and DB1 to restore

them to an operational state so that they can be put back into service functioning as the warm-standby

pair to support a future failover event.

Page 12 of 21

Appendix B: Database Synchronization Script
#!/opt/ngp/lib/python/bin/python

import os
import sys
import time
import shutil
import tarfile
import subprocess as sp
from glob import glob

help message
def show_help(e=0):
 print 'usage: pgsync [-h] [-t TIMEOUT] [-j JOBS] [-b BACKUPS] REMOTE_HOST'
 print
 print "\t-t #\ttimeout(seconds) for new import wait"
 print "\t-j #\tnumber of jobs to spawn for pg_dump"
 print "\t-b #\tnumber of backups to keep"
 print "\t-h\tthis message"
 print
 sys.exit(e)

try:
 REMOTE_HOST = sys.argv[-1]
except:
 show_help(1)

BASE_DIR = '/'.join([os.getenv('HOME'), 'pgbackups'])
BACKUPS_DIR = '/'.join([BASE_DIR, 'backups'])
LOG_FILE = '/'.join([BASE_DIR, 'pgsync.log'])

logging function for the pgsync process
def dumplogger(level, msg):
 timestamp = time.strftime('%Y-%m-%d %H:%M:%S')
 logmsg = ''.join([timestamp, ' pgsync: ', level, ': ', msg, '\n'])
 with open(LOG_FILE, 'a+') as log:
 log.write(logmsg)
 #print logmsg.rstrip()

return the time in seconds from start to now as a string
def get_runtime(start):
 runtime = int(time.time() - start)
 return str(runtime)

execute shell commands, return the exit-code, and log errors
def run_command(cmd):
 s = sp.Popen(cmd, stdout=sp.PIPE, stderr=sp.PIPE)
 output, error = s.communicate()
 rc = s.returncode
 # if an error occurs, log it
 if len(error):
 dumplogger('ERROR', error.rstrip())

Page 13 of 21

 return rc

check service status and return the return code from the command
def check_service_status(service):
 cmd = ['/sbin/service', service ,'status']
 result = run_command(cmd)
 return result

create the pg_dump command and execute it
def execute_pg_dump(jobs):
 dump = '.'.join(['pgbackup', time.strftime('%Y%m%d%H%M%S')])
 dumpPath = '/'.join([BACKUPS_DIR, dump])
 cmd = 'pg_dump ngp -F directory -f'.split()
 cmd.append(dumpPath)
 # set jobs number if more than 1
 if jobs > 1:
 cmd.append('-j')
 cmd.append(str(jobs))
 result = run_command(cmd)
 if result != 0:
 return result
 return dump

tarball dump directory and remove the originals
def tar_dumpdir(dump):
 zname = '.'.join([dump, 'tgz'])
 os.chdir(BACKUPS_DIR)
 tar = tarfile.open(zname, 'w:gz')
 tar.add(dump)
 tar.close()
 shutil.rmtree(dump)
 return zname

use rsync to sync backup directories
def sync_backups(zname):
 dumplogger('INFO', ': '.join(['syncing backups with', REMOTE_HOST]))
 user = os.getenv('USER')
 login = '@'.join([user, REMOTE_HOST])
 destPath = ':'.join([login, BACKUPS_DIR])
 rsync = ['rsync', '-a', zname, destPath]
 result = run_command(rsync)
 dumplogger('INFO', 'sync completed')
 return result

maintain old backups by options
def maintain_backups(limit):
 globPath = '/'.join([BACKUPS_DIR, 'pgbackup*.tgz'])
 backups = sorted(glob(globPath), reverse=True)
 removed = 0
 for i, backup in enumerate(backups):
 if i >= int(limit):
 os.remove(backup)
 removed += 1
 return removed

Page 14 of 21

wait for a new import from the active database
def wait_for_import(timeout):
 dumplogger('INFO', 'waiting ' + str(timeout) + ' seconds for new import')
 timeoutTime = time.time() + timeout
 globPath = '/'.join([BACKUPS_DIR, '*'])
 numBaksExist = len(glob(globPath))
 numBaks = numBaksExist
 while numBaksExist <= numBaks:
 if time.time() > timeoutTime:
 return 1
 time.sleep(5)
 numBaksExist = len(glob(globPath))
 return 0

start/stop DB using pg_ctl
def pgctl_db(action):
 dumplogger('INFO', ' '.join([action , 'database']))
 cmd = ['pg_ctl', action]
 for i in '-s -w -t 60 -l'.split():
 cmd.append(i)
 cmd.append(LOG_FILE)
 result = run_command(cmd)
 if result != 0:
 dumplogger('ERROR', ' '.join(['database failed to', action]))
 return result

return the file path for the latest pg dump
def get_latest_dump():
 globPath = '/'.join([BACKUPS_DIR, 'pgbackup*'])
 latest = sorted(glob(globPath), reverse=True)[0]
 return latest

wait for new import to complete its transfer
def wait_for_entire_import(zdump):
 lastSize = os.stat(zdump).st_size
 count = 0
 while count < 5:
 time.sleep(60)
 newSize = os.stat(zdump).st_size
 if newSize > lastSize:
 lastSize = newSize
 count = 0
 else:
 count += 1

unzip and expand tar of the latest backup
def decompress_backup(zdump):
 tar = tarfile.open(zdump, 'r:gz')
 tar.extractall(path=BACKUPS_DIR)
 tar.close()
 return zdump[:-4]

execute the import/pg_restore

Page 15 of 21

def import_latest_dump(dump, jobs):
 cmd = ['pg_restore', '-d', 'ngp']
 if jobs > 1:
 cmd.append('-j')
 cmd.append(str(jobs))
 cmd.append(dump)
 result = run_command(cmd)
 shutil.rmtree(dump)
 return result

drop and create the ngp database
def resetDB():
 dropcmd = ['dropdb', 'ngp']
 result = run_command(dropcmd)
 if result != 0:
 dumplogger('ERROR', 'failed to drop ngp database')
 createcmd = ['createdb','ngp']
 result = run_command(createcmd)
 if result != 0:
 dumplogger('ERROR', 'failed to create ngp database')
 sys.exit(1)

run on standby database
def run_standby(timeout, jobs):
 if wait_for_import(timeout) != 0:
 dumplogger('ERROR', 'timeout waiting for new import')
 return 1
 zdump = get_latest_dump()
 dumplogger('INFO', 'waiting for new import ' + str(zdump) + ' to complete
transfer')
 wait_for_entire_import(zdump)
 dumplogger('INFO', 'decompressing backup')
 dump = decompress_backup(zdump)
 dumplogger('INFO', 'reset ngp database')
 resetDB()
 dumplogger('INFO', 'importing ngp database from latest backup')
 result = import_latest_dump(dump, jobs)
 if result != 0:
 dumplogger('ERROR', 'latest import failed')
 return 1
 dumplogger('INFO', 'latest import succeeded')
 return 0

go through standby operations
def standby_ops(timeout, backups, jobs):
 dumplogger('INFO', 'running standby device operations')
 dbStarted = pgctl_db('start')
 if dbStarted != 0:
 return 1
 result = run_standby(timeout, jobs)
 if result == 0:
 maintain_backups(backups)
 return result

Page 16 of 21

build dict from args
def get_opts():
 if 'python' in sys.argv[0]:
 args = sys.argv[1:]
 args = sys.argv
 if len(args) % 2:
 dumplogger('ERROR', 'command not valid')
 show_help(e=1)
 pargs = ['t', 'j', 'b', 'h']
 opts = {'timeout': 3600, 'jobs': 1, 'backups': 14}
 for i, a in enumerate(args):
 a = a.strip('-')
 if a in pargs:
 if a == 'h':
 show_help()
 elif a == 't':
 opts['timeout'] = int(args[i+1])
 elif a == 'j':
 opts['jobs'] = int(args[i+1])
 elif a == 'b':
 opts['backups'] = int(args[i+1])
 return opts

main function
def main():
 try:
 opts = get_opts()
 except:
 show_help(1)

 optsstr = ', '.join([': '.join([k, str(opts.get(k))]) for k in opts])
 dumplogger('INFO', ' '. join(['starting pgsync with options', optsstr]))

 # check if NGP is running on this system
 if check_service_status('ngp') != 0:
 result = 1
 try:
 result = standby_ops(opts.get('timeout'), opts.get('backups'),
opts.get('jobs'))
 except:
 result = 1
 dumplogger('ERROR', 'standby system failed to import')
 finally:
 if pgctl_db('status') == 0:
 pgctl_db('stop')
 sys.exit(result)

 dumplogger('INFO', 'running active device operations')
 dumplogger('INFO', 'delaying start for 1 minute')
 time.sleep(60)
 dumplogger('INFO', 'starting dump of database')
 pgdump = execute_pg_dump(opts.get('jobs'))
 if type(pgdump) == int:
 sys.exit(1)

Page 17 of 21

 dumplogger('INFO', 'database dump created: ' + str(pgdump))
 dumplogger('INFO', 'tarballing dump directory')
 backup = tar_dumpdir(pgdump)
 rmbaks = maintain_backups(opts.get('backups'))
 if rmbaks > 0:
 msg = ' '.join(['maintenance removed', str(rmbaks), 'backup(s)'])
 dumplogger('INFO', msg)
 dumplogger('INFO', 'sending latest backup ' + str(backup) + ' to standby
device')
 sync = sync_backups(backup)

if __name__ == '__main__':
 try:
 main()
 except Exception, e:
 msg = ': '.join(['main failed to run successfully', e.message])
 dumplogger('ERROR', msg)
 sys.exit(1)

Page 18 of 21

Appendix C: Mediation Server Backup Script
#!/usr/bin/python

import os
import sys
import time
import tarfile
from glob import glob
import subprocess as sp

help message
def show_help(e=0):
 print 'usage: ngpsync [-h] [-b BACKUPS] REMOTE_HOST'
 print
 print "\t-b #\tnumber of backups to keep"
 print "\t-h\tthis message"
 print
 sys.exit(e)

REMOTE_HOST = sys.argv[-1]
BASE_DIR = '/opt/ngpbackups'
BACKUPS_DIR = '/'.join([BASE_DIR, 'backups'])
LOG_FILE = '/'.join([BASE_DIR, 'ngpsync.log'])
EXCLUDE_DIRS = [
 'jboss-as-7.2.0.Final/standalone/data',
 'jboss-as-7.2.0.Final/standalone/tmp',
 'jboss-as-7.2.0.Final/standalone/log',
 'config/network',
 'openldap/var',
 'log'
]
EXCLUDE_FILES = [
 '.log',
 '.gitignore',
 '.pyc',
 '.pyo'
]

logging function for the ngp sync process
def synclogger(level, msg):
 timestamp = time.strftime('%Y-%m-%d %H:%M:%S')
 logmsg = ''.join([timestamp, ' ngpsync: ', level, ': ', msg, '\n'])
 with open(LOG_FILE, 'a+') as log:
 log.write(logmsg)
 #print logmsg.rstrip()

directory match exclusions
def exclude_dirs(filepath):
 for i in EXCLUDE_DIRS:
 end = len(i)
 if filepath[:end] == i:

Page 19 of 21

 return True
 return False

file match exclusions
def exclude_files(filename):
 for i in EXCLUDE_FILES:
 begin = 0 - len(i)
 if filename[begin:] == i:
 return True
 return False

filter out excluded directories and files
def exclusions(filename):
 filename = filename[4:]
 if any((exclude_dirs(filename), exclude_files(filename))):
 return True
 return False

tarball the /opt/ngp directory into BASE_DIR
def create_backup():
 os.chdir('/opt')
 timestamp = time.strftime('%Y%m%d%H%M%S')
 backupName = ''.join([BACKUPS_DIR, '/ngpbackup', timestamp, '.tgz'])
 backup = tarfile.open(backupName, 'w:gz')
 backup.add('ngp', exclude=exclusions)
 os.chdir('/root')
 backup.add('.m2')
 backup.close()
 os.chdir(BASE_DIR)
 return backup.name

execute shell commands, return the exit-code, and log errors
def run_command(cmd):
 s = sp.Popen(cmd, stdout=sp.PIPE, stderr=sp.PIPE)
 output, error = s.communicate()
 rc = s.returncode
 # if an error occurs, log it
 if len(error):
 synclogger('ERROR', error.rstrip())
 return rc

rsync latest backup to the standby mediation server's backup directory
def rsync_latest(latest):
 remoteHost = '@'.join([os.getenv('USER'), REMOTE_HOST])
 remotePath = ':'.join([remoteHost, BACKUPS_DIR])
 cmd = ['/usr/bin/rsync', '-a', latest, remotePath]
 rc = run_command(cmd)
 return rc

check service status and return the return code from the command
def check_service_status(service):
 cmd = ['/sbin/service', service ,'status']
 result = run_command(cmd)
 return result

Page 20 of 21

remove oldest backups if number of backups exceeds maintenance input
def maintenance(limit):
 backups = sorted(glob('/'.join([BACKUPS_DIR, '*.tgz'])), reverse=True)
 count = 0
 for i, backup in enumerate(backups):
 if i >= limit:
 os.remove(backup)
 count += 1
 return count

build dict from args
def get_opts():
 if 'python' in sys.argv[0]:
 args = sys.argv[1:]
 else:
 args = sys.argv
 if len(args) < 2:
 show_help(1)
 pargs = ['b', 'h']
 opts = {'backups': 14}
 for i, a in enumerate(args):
 a = a.strip('-')
 if a in pargs:
 if a == 'h':
 show_help()
 elif a == 'b':
 opts['backups'] = int(args[i+1])
 return opts

run backup and sync on active server
def run_backup():
 synclogger('[INFO]', 'starting ngp backup')
 latest = create_backup()
 size = str(os.stat(latest).st_size)
 synclogger('[INFO]', 'backup complete: ' + latest + ' : ' + size + ' bytes')
 synclogger('[INFO]', 'starting backup sync')
 rsync_latest(latest)
 synclogger('[INFO]', 'backup sync complete')

run maintenance
def main():

 ngp = check_service_status('ngp')

 if ngp == 0:
 run_backup()
 else:
 opts['backups'] -= 1

 synclogger('[INFO]', 'performing backup maintenance')
 removed = maintenance(opts.get('backups'))
 synclogger('[INFO]', ' '.join(['removed', str(removed), 'backups']))

Page 21 of 21

if __name__ == '__main__':

 opts = None
 try:
 opts = get_opts()
 except:
 sys.exit(1)

 main()

		Introduction

		Loss of Information During Recovery

		Database Synchronization Script

		Overview

		Workflow Diagram

		Database Synchronization Script Installation

		Mediation Server Backup Script

		Overview

		Workflow Diagram

		Mediation Server Backup Script Installation

		Failover Procedure

		Appendix B: Database Synchronization Script

		Appendix C: Mediation Server Backup Script

PolicyGuru System Enhanced Availability Guide_7212017.pdf

PolicyGuru®

Meta-Policy Controller

Enhanced Availability Guide

Page 2 of 21

Contents

Introduction .. 3

Loss of Information During Recovery.. 4

Database Synchronization Script .. 4

Overview ... 4

Workflow Diagram .. 4

Database Synchronization Script Installation ... 5

Mediation Server Backup Script .. 6

Overview ... 6

Workflow Diagram .. 7

Mediation Server Backup Script Installation ... 8

Failover Procedure .. 9

Appendix B: Database Synchronization Script .. 12

Appendix C: Mediation Server Backup Script ... 18

Page 3 of 21

PolicyGuru® System Enhanced Availability
Model
Introduction
The PolicyGuru Solution can be deployed in a distributed Enhanced Availability model to allow for rapid

system recovery in the event of active management cluster failure. In this configuration model, you

deploy two Mediation Server and Database Server pairs at separate sites as active and warm-standby

management cluster pairs. These sites can be in different locations on the same campus or in different

locations across the country or continent. Global deployments where the two locations are on different

continents are not supported.

One Mediation Server/Database Server pair is the active pair at any time to support normal operations,

while the secondary pair is in warm-standby mode, ready to be placed in the active role if normal

operations of the currently active pair are impaired. The secondary servers are powered on but are not

active at the PolicyGuru application level. The standby Database Server is regularly synchronized with

the active Database Server and the active Mediation Server configuration is regularly backed up to the

standby Mediation Server so its configuration can be quickly imported to the standby when failover is

needed.

To mitigate issues related to data integrity, loss, and potential duplication, the Mediation Server and

Database Server co-resident at a site are considered paired and are restricted to communicating with

each other; that is, the Mediation Serve at Site A only communicates with the Database Server at Site A

and is not permitted to communicate with the Database Server at Site B if the Database Server at Site A

fails. Total or partial loss of any active management cluster component may trigger the failover

procedure, in which the entire cluster is failed over to the secondary warm standby cluster. The

secondary cluster then assumes and retains the active role. The former secondary server pair, once

repaired, assumes the warm standby mode until a failover event occurs, when the roles will again be

reversed using the failover procedure on page 9.

Depending on the error condition observed, triggering the failover procedure does not necessarily mean

that PolicyGuru System operations have been disrupted. The procedure can be invoked as a

preventative measure when certain issues are observed, in addition to more serious faults.

SecureLogix has Python scripts available to perform the backup and synchronization operations on the

standby management cluster. Instructions for their installation and use are provided in this guide.

Contact SecureLogix Technical Support to obtain copies of the scripts. Their installation, function, and

use is described below.

Note: For general system backup procedures for maintaining a complete backup of all PolicyGuru

Solution components, refer to the PolicyGuru® Meta-Policy Controller Backup and Recovery Guide. This

document applies specifically to implementing the Enhanced Availability deployment model.

Page 4 of 21

Loss of Information During Recovery
The recovery procedures described in this document will not restore a PolicyGuru System to the point of

failure, but rather to the point of the last backup execution. Therefore, a system recovered with this

procedure will lose call data and any system configuration changes that occurred after the backup was

executed. SecureLogix recommends running the scripts at least daily. Administrators desiring a shorter

Recovery Point Objective should execute the scripts more frequently.

Administrators who need backup and recovery strategies that do not lose data or that minimize data

loss to the greatest extent possible will need to implement alternative backup and recovery strategies

that are beyond the scope of this document and not supported by SecureLogix.

Database Synchronization Script

Overview
A database backup and synchronization script named pgsync.py is scheduled as a cron job to run at the

same time on both the active and standby database servers. When the script runs on the active

database server, it exports the database, creates a backup tar file, and then copies the tar file to the

standby database. A copy of the backup remains on the active database server. A configurable number

of previous backups are retained on each server, with the oldest backup deleted when the configured

number is exceeded when the script runs. When the script runs on the standby database, it checks for

the presence of a new backup file. If one is found, it waits a configurable number of minutes after the

backup file stops growing (by default, 5 minutes), and then untars it, starts the psql database (not the

ngp service),imports the backup into the database, and then stops the psql database when the import

completes. It then checks to see if the number of existing backups exceeds the configured number of

backups to retain and if so, deletes the oldest backup. This process ensures that the standby database

remains synched to the last active database backup. The script determines which is the active database

and which is the standby by determining whether the ngp service is running on the system. Therefore, it

is important to ensure that the ngp service remains off on the standby database server by setting

chkconfig off.

It is recommended that the script be scheduled to run at least daily. A copy of this script can be found in

“Appendix B: Database Synchronization Script” on page 12.

Workflow Diagram
Figure 1 illustrates the workflow the script executes.

Page 5 of 21

Figure 1: Database Synchronization Script Workflow

Database Synchronization Script Installation
To install the database synchronization script

1. Log in to each database and become the postgres user:

$ sudo su – postgres

2. Create or modify the .bash_profile in the postgres home directory at /opt/ngp/pgsql-

9.3/postgres/.bash_profile:

.bash_profile

User specific environment and startup programs

LD_LIBRARY_PATH=$HOME/lib

PATH=$PATH:$HOME/bin

PGDATA=/opt/ngp/db

export PATH

export LD_LIBRARY_PATH

export PGDATA

3. Create a directory named pgbackups/backups in the postgres home directory:

$ mkdir -p ~/pgbackups/backups

Page 6 of 21

4. Copy the script to the pgbackups directory you created in the postgres home directory and make

sure it is owner executable:

$ chmod u+x ~/pgbackups/pgsync.py

5. Create ssh keys for the postgres user:

$ ssh-keygen

use defaults, no password

6. Copy the public keys from one server to the other and place them in the /opt/ngp/pgsql-

9.3//.ssh/authorized_keys file and chmod the file to 400.

7. Create a crontab entry to run at the same time on each of the 2 database servers:

$ crontab -e

0 6 * * * . $HOME/.bash_profile; /opt/ngp/pgsql-

9.3/pgbackups/pgsync.py [-j JOBS] [-t TIMEOUT] [-b BACKUPS] OTHER-

DATABASE

Where:

 -t TIMEOUT is the number of seconds for new import wait
 -j JOBS is number of jobs to spawn for pg_dump
 -b BACKUPS is the number of backups to keep
 OTHER-DATABASE is the IP address and path of the backup directory on the other database
server

To view the pgsync help file, use the following command:

pgsync [-h] [-t TIMEOUT] [-j JOBS] [-b BACKUPS] REMOTE_HOST

 -t # timeout(seconds) for new import wait
 -j # number of jobs to spawn for pg_dump
 -b # number of backups to keep
 -h this message

8. A log file is created at /pgbackups/pgsync.log when the script runs and then appended on each

subsequent run. It is recommended that you use log rotation configuration to manage the log size.

Mediation Server Backup Script

Overview
A Python script named ngpsync.py backs up the active Mediation Server configuration files and copies

them to a backup directory on the standby Mediation Server. This script is scheduled as a cron job to run

at the same time on both the active and standby Mediation Server. When the script runs on the active

Mediation Server, it creates a backup tar file of the ngp directory (excluding unnecessary files and the

system-specific files in /config/network), adds the .m2 directory (which contains Rule assets) to the tar

file, and then copies the tar file to the standby Mediation Server. A copy of the backup file remains on

Page 7 of 21

the active Mediation Server. A configurable number of previous backups are retained on each server,

with the oldest backup deleted when the configured number is exceeded when the script runs.

Unlike the database, the active Mediation Server backup is not automatically synchronized to the

standby Mediation Server. It is imported during the failover procedure in case its configuration or other

errors caused the failure. Importing the backup takes only a few minutes during the failover procedure

and you can choose which backup to import.

It is recommended that the script be scheduled to run at least daily. A copy of this script can be found in

“Appendix C: Mediation Server Backup Script” on page 18.

Workflow Diagram
Figure 2 illustrates the workflow the script executes.

Figure 2: Mediation Server Backup Script Workflow

Workflow details:

The script checks ngp service status and executes active device operations if running, or standby

device operation if not running, as outlined below:

Page 8 of 21

Active device operations:

a. tar czf ngpbackupTIMESTAMP.tgz -X exclusionsfile -C /opt ngp

Where exclusionsfile:

 jboss-as-7.2.0.Final/standalone/data

 jboss-as-7.2.0.Final/standalone/tmp

 jboss-as-7.2.0.Final/standalone/log

 config/network

 openldap/var

 log

 *.log

 *.pyc

 *.pyo

 *.gitignore

b. tar rzf ngpbackupTIMESTAMP.tgz -C /root .m2

c. rsync -a ngpbackupTIMESTAMP.tgz root@remote:/opt/ngpbackups/backups/

d. Remove oldest backup if more than the configured limit exist.

Standby device operation:

 Remove oldest backup if more than the configured limit exist.

Mediation Server Backup Script Installation
To install the Mediation Server backup script

1. Log in to each Mediation Server and become root:

$ sudo -i

2. Create the directory path /opt/ngpbackups/backups:

mkdir -p /opt/ngpbackups/backups

3. Change to the /opt/ngpbackups directory:

cd /opt/ngpbackups

4. Copy the script to /opt/ngpbackups/ngpsync.py and make sure it is owner executable:

Page 9 of 21

chmod u+x ngpsync.py

5. Ensure PermitRootLogin without-password is set in sshd configuration:

$ grep PermitRootLogin /etc/ssh/sshd_config
#PermitRootLogin no
PermitRootLogin without-password

Note: if you change the sshd configuration, you must restart or reload sshd:

6. Create ssh keys to the opposing server if none exist:

ssh-keygen

use defaults, no password

7. Copy the public keys from one server to the other and put them in the /.ssh/authorized_keys
file and chmod the file to 400.

8. Create a cron entry to run at the same time on each Mediation Server:

vi /etc/cron.d/ngpsync
0 6 * * * = every day 0600 UTC = 0100 CST
0 6 * * * root . $HOME/.bash_profile; /opt/ngpbackups/ngpsync.py

[-b BACKUPS] OTHER-MEDIATION

Where:

 -b BACKUPS is the number of backups to keep
 -OTHER-MEDIATION is the IP address and path to the backup directory on the standby
Mediation Server.

9. To view the ngpsync help file, use the following command:

ngpsync [-h] [-b BACKUPS] REMOTE_HOST

 -b # number of backups to keep
 -h this message

10. A log file is created at /opt/ngpbackups/ngpsync.log the first time the script runs and then
appended on each subsequent run. It is recommended that you use log rotation configuration to
manage the log size.

Failover Procedure
For purposes of the procedure below, the active Mediation Server (MS1) and active Database Server

(DB1) are located at Data Center A and the secondary warm-standby Mediation Server (MS2) and

Page 10 of 21

Database Server (DB2) are located at Data Center B and the database has been kept synchronized per

the Backup and Restore instructions in this document.

To fail over the active management cluster to the standby cluster

1. Stop the ngp service on the active Mediation Server (MS1) and Database Server (DB1):

service ngp stop 5

2. Prevent the ngp service on the failed servers from starting on reboot by executing the following

command on MS1 and DB1::

chkconfig ngp off

3. SSH to the standby Mediation Server.

4. Change directory to /opt/ngpbackups/backups:

$ cd /opt/ngpbackups/backups
$ ls -l
ngpbackupTIMESTAMP1.tgz
ngpbackupTIMESTAMP2.tgz

5. Restore from the selected backup:

$ tar xzf ngpbackupTIMESTAMP2.tgz -C /opt --exclude=.m2
$ tar xzf ngpbackupTIMESTAMP2.tgz -C /root --exclude=ngp

6. Start the ngp service on the secondary Database Server (DB2):

service ngp start

7. After startup completes, verify that all processes are green:

service ngp status

8. Enable chkconfig of the ngp process on DB2 to allow automatic ngp startup on system startup:

chkconfig ngp on

9. Start the ngp service on the secondary Mediation Server (MS2):

service ngp start

10. After startup completes, verify that all processes are green:

service ngp status

11. Enable chkconfig of the ngp process on MS2 to allow automatic ngp startup on system startup:
chkconfig ngp on

The former secondary server pair (MS2 and DB2) are now the active management cluster.

Page 11 of 21

12. Redirect all ENUM Servers and Metadata Probes to the now-active Mediation Server: (MS2).

a. SSH to each ENUM Server and Metadata Probe.

b. On each system, edit /opt/ngp/config/network/jboss_mediation_ip to reflect the IP

address of MS2.

c. On each ENUM Server, optionally reset the SEP policy. This is recommended if SEP policy

changes have occurred since the last time Mediation Server configuration backup and

Database backup were performed. Resetting the SEP policy will allow the ENUM Servers to

most easily sync to the current SEP Policy configured on MS2.To reset SEP Policy, issue the

following command on each ENUM server:

sqlite3 /opt/ngp/bin/enum/config.db 'update items set value = "1"

where name = "policyReset";'

d. On each system, restart the ngp service to effect the change.

service ngp stop 5

service ngp start

13. Log in to MS2 and verify functionality.

14. Perform any configuration or policy changes that were previously performed on MS1 since the last

configuration and database backup (and thus are not present on MS2).

15. Commit SEP Policy and Build and Deploy CEP Policy.

Log and call activity locally cached on the ENUM Servers and Metadata Probes during the failover

procedure is automatically uploaded when communication with the active Mediation Server is

established.

It is recommended that recovery operation be performed as soon as possible on MS1 and DB1 to restore

them to an operational state so that they can be put back into service functioning as the warm-standby

pair to support a future failover event.

Page 12 of 21

Appendix B: Database Synchronization Script
#!/opt/ngp/lib/python/bin/python

import os
import sys
import time
import shutil
import tarfile
import subprocess as sp
from glob import glob

help message
def show_help(e=0):
 print 'usage: pgsync [-h] [-t TIMEOUT] [-j JOBS] [-b BACKUPS] REMOTE_HOST'
 print
 print "\t-t #\ttimeout(seconds) for new import wait"
 print "\t-j #\tnumber of jobs to spawn for pg_dump"
 print "\t-b #\tnumber of backups to keep"
 print "\t-h\tthis message"
 print
 sys.exit(e)

try:
 REMOTE_HOST = sys.argv[-1]
except:
 show_help(1)

BASE_DIR = '/'.join([os.getenv('HOME'), 'pgbackups'])
BACKUPS_DIR = '/'.join([BASE_DIR, 'backups'])
LOG_FILE = '/'.join([BASE_DIR, 'pgsync.log'])

logging function for the pgsync process
def dumplogger(level, msg):
 timestamp = time.strftime('%Y-%m-%d %H:%M:%S')
 logmsg = ''.join([timestamp, ' pgsync: ', level, ': ', msg, '\n'])
 with open(LOG_FILE, 'a+') as log:
 log.write(logmsg)
 #print logmsg.rstrip()

return the time in seconds from start to now as a string
def get_runtime(start):
 runtime = int(time.time() - start)
 return str(runtime)

execute shell commands, return the exit-code, and log errors
def run_command(cmd):
 s = sp.Popen(cmd, stdout=sp.PIPE, stderr=sp.PIPE)
 output, error = s.communicate()
 rc = s.returncode
 # if an error occurs, log it
 if len(error):
 dumplogger('ERROR', error.rstrip())

Page 13 of 21

 return rc

check service status and return the return code from the command
def check_service_status(service):
 cmd = ['/sbin/service', service ,'status']
 result = run_command(cmd)
 return result

create the pg_dump command and execute it
def execute_pg_dump(jobs):
 dump = '.'.join(['pgbackup', time.strftime('%Y%m%d%H%M%S')])
 dumpPath = '/'.join([BACKUPS_DIR, dump])
 cmd = 'pg_dump ngp -F directory -f'.split()
 cmd.append(dumpPath)
 # set jobs number if more than 1
 if jobs > 1:
 cmd.append('-j')
 cmd.append(str(jobs))
 result = run_command(cmd)
 if result != 0:
 return result
 return dump

tarball dump directory and remove the originals
def tar_dumpdir(dump):
 zname = '.'.join([dump, 'tgz'])
 os.chdir(BACKUPS_DIR)
 tar = tarfile.open(zname, 'w:gz')
 tar.add(dump)
 tar.close()
 shutil.rmtree(dump)
 return zname

use rsync to sync backup directories
def sync_backups(zname):
 dumplogger('INFO', ': '.join(['syncing backups with', REMOTE_HOST]))
 user = os.getenv('USER')
 login = '@'.join([user, REMOTE_HOST])
 destPath = ':'.join([login, BACKUPS_DIR])
 rsync = ['rsync', '-a', zname, destPath]
 result = run_command(rsync)
 dumplogger('INFO', 'sync completed')
 return result

maintain old backups by options
def maintain_backups(limit):
 globPath = '/'.join([BACKUPS_DIR, 'pgbackup*.tgz'])
 backups = sorted(glob(globPath), reverse=True)
 removed = 0
 for i, backup in enumerate(backups):
 if i >= int(limit):
 os.remove(backup)
 removed += 1
 return removed

Page 14 of 21

wait for a new import from the active database
def wait_for_import(timeout):
 dumplogger('INFO', 'waiting ' + str(timeout) + ' seconds for new import')
 timeoutTime = time.time() + timeout
 globPath = '/'.join([BACKUPS_DIR, '*'])
 numBaksExist = len(glob(globPath))
 numBaks = numBaksExist
 while numBaksExist <= numBaks:
 if time.time() > timeoutTime:
 return 1
 time.sleep(5)
 numBaksExist = len(glob(globPath))
 return 0

start/stop DB using pg_ctl
def pgctl_db(action):
 dumplogger('INFO', ' '.join([action , 'database']))
 cmd = ['pg_ctl', action]
 for i in '-s -w -t 60 -l'.split():
 cmd.append(i)
 cmd.append(LOG_FILE)
 result = run_command(cmd)
 if result != 0:
 dumplogger('ERROR', ' '.join(['database failed to', action]))
 return result

return the file path for the latest pg dump
def get_latest_dump():
 globPath = '/'.join([BACKUPS_DIR, 'pgbackup*'])
 latest = sorted(glob(globPath), reverse=True)[0]
 return latest

wait for new import to complete its transfer
def wait_for_entire_import(zdump):
 lastSize = os.stat(zdump).st_size
 count = 0
 while count < 5:
 time.sleep(60)
 newSize = os.stat(zdump).st_size
 if newSize > lastSize:
 lastSize = newSize
 count = 0
 else:
 count += 1

unzip and expand tar of the latest backup
def decompress_backup(zdump):
 tar = tarfile.open(zdump, 'r:gz')
 tar.extractall(path=BACKUPS_DIR)
 tar.close()
 return zdump[:-4]

execute the import/pg_restore

Page 15 of 21

def import_latest_dump(dump, jobs):
 cmd = ['pg_restore', '-d', 'ngp']
 if jobs > 1:
 cmd.append('-j')
 cmd.append(str(jobs))
 cmd.append(dump)
 result = run_command(cmd)
 shutil.rmtree(dump)
 return result

drop and create the ngp database
def resetDB():
 dropcmd = ['dropdb', 'ngp']
 result = run_command(dropcmd)
 if result != 0:
 dumplogger('ERROR', 'failed to drop ngp database')
 createcmd = ['createdb','ngp']
 result = run_command(createcmd)
 if result != 0:
 dumplogger('ERROR', 'failed to create ngp database')
 sys.exit(1)

run on standby database
def run_standby(timeout, jobs):
 if wait_for_import(timeout) != 0:
 dumplogger('ERROR', 'timeout waiting for new import')
 return 1
 zdump = get_latest_dump()
 dumplogger('INFO', 'waiting for new import ' + str(zdump) + ' to complete
transfer')
 wait_for_entire_import(zdump)
 dumplogger('INFO', 'decompressing backup')
 dump = decompress_backup(zdump)
 dumplogger('INFO', 'reset ngp database')
 resetDB()
 dumplogger('INFO', 'importing ngp database from latest backup')
 result = import_latest_dump(dump, jobs)
 if result != 0:
 dumplogger('ERROR', 'latest import failed')
 return 1
 dumplogger('INFO', 'latest import succeeded')
 return 0

go through standby operations
def standby_ops(timeout, backups, jobs):
 dumplogger('INFO', 'running standby device operations')
 dbStarted = pgctl_db('start')
 if dbStarted != 0:
 return 1
 result = run_standby(timeout, jobs)
 if result == 0:
 maintain_backups(backups)
 return result

Page 16 of 21

build dict from args
def get_opts():
 if 'python' in sys.argv[0]:
 args = sys.argv[1:]
 args = sys.argv
 if len(args) % 2:
 dumplogger('ERROR', 'command not valid')
 show_help(e=1)
 pargs = ['t', 'j', 'b', 'h']
 opts = {'timeout': 3600, 'jobs': 1, 'backups': 14}
 for i, a in enumerate(args):
 a = a.strip('-')
 if a in pargs:
 if a == 'h':
 show_help()
 elif a == 't':
 opts['timeout'] = int(args[i+1])
 elif a == 'j':
 opts['jobs'] = int(args[i+1])
 elif a == 'b':
 opts['backups'] = int(args[i+1])
 return opts

main function
def main():
 try:
 opts = get_opts()
 except:
 show_help(1)

 optsstr = ', '.join([': '.join([k, str(opts.get(k))]) for k in opts])
 dumplogger('INFO', ' '. join(['starting pgsync with options', optsstr]))

 # check if NGP is running on this system
 if check_service_status('ngp') != 0:
 result = 1
 try:
 result = standby_ops(opts.get('timeout'), opts.get('backups'),
opts.get('jobs'))
 except:
 result = 1
 dumplogger('ERROR', 'standby system failed to import')
 finally:
 if pgctl_db('status') == 0:
 pgctl_db('stop')
 sys.exit(result)

 dumplogger('INFO', 'running active device operations')
 dumplogger('INFO', 'delaying start for 1 minute')
 time.sleep(60)
 dumplogger('INFO', 'starting dump of database')
 pgdump = execute_pg_dump(opts.get('jobs'))
 if type(pgdump) == int:
 sys.exit(1)

Page 17 of 21

 dumplogger('INFO', 'database dump created: ' + str(pgdump))
 dumplogger('INFO', 'tarballing dump directory')
 backup = tar_dumpdir(pgdump)
 rmbaks = maintain_backups(opts.get('backups'))
 if rmbaks > 0:
 msg = ' '.join(['maintenance removed', str(rmbaks), 'backup(s)'])
 dumplogger('INFO', msg)
 dumplogger('INFO', 'sending latest backup ' + str(backup) + ' to standby
device')
 sync = sync_backups(backup)

if __name__ == '__main__':
 try:
 main()
 except Exception, e:
 msg = ': '.join(['main failed to run successfully', e.message])
 dumplogger('ERROR', msg)
 sys.exit(1)

Page 18 of 21

Appendix C: Mediation Server Backup Script
#!/usr/bin/python

import os
import sys
import time
import tarfile
from glob import glob
import subprocess as sp

help message
def show_help(e=0):
 print 'usage: ngpsync [-h] [-b BACKUPS] REMOTE_HOST'
 print
 print "\t-b #\tnumber of backups to keep"
 print "\t-h\tthis message"
 print
 sys.exit(e)

REMOTE_HOST = sys.argv[-1]
BASE_DIR = '/opt/ngpbackups'
BACKUPS_DIR = '/'.join([BASE_DIR, 'backups'])
LOG_FILE = '/'.join([BASE_DIR, 'ngpsync.log'])
EXCLUDE_DIRS = [
 'jboss-as-7.2.0.Final/standalone/data',
 'jboss-as-7.2.0.Final/standalone/tmp',
 'jboss-as-7.2.0.Final/standalone/log',
 'config/network',
 'openldap/var',
 'log'
]
EXCLUDE_FILES = [
 '.log',
 '.gitignore',
 '.pyc',
 '.pyo'
]

logging function for the ngp sync process
def synclogger(level, msg):
 timestamp = time.strftime('%Y-%m-%d %H:%M:%S')
 logmsg = ''.join([timestamp, ' ngpsync: ', level, ': ', msg, '\n'])
 with open(LOG_FILE, 'a+') as log:
 log.write(logmsg)
 #print logmsg.rstrip()

directory match exclusions
def exclude_dirs(filepath):
 for i in EXCLUDE_DIRS:
 end = len(i)
 if filepath[:end] == i:

Page 19 of 21

 return True
 return False

file match exclusions
def exclude_files(filename):
 for i in EXCLUDE_FILES:
 begin = 0 - len(i)
 if filename[begin:] == i:
 return True
 return False

filter out excluded directories and files
def exclusions(filename):
 filename = filename[4:]
 if any((exclude_dirs(filename), exclude_files(filename))):
 return True
 return False

tarball the /opt/ngp directory into BASE_DIR
def create_backup():
 os.chdir('/opt')
 timestamp = time.strftime('%Y%m%d%H%M%S')
 backupName = ''.join([BACKUPS_DIR, '/ngpbackup', timestamp, '.tgz'])
 backup = tarfile.open(backupName, 'w:gz')
 backup.add('ngp', exclude=exclusions)
 os.chdir('/root')
 backup.add('.m2')
 backup.close()
 os.chdir(BASE_DIR)
 return backup.name

execute shell commands, return the exit-code, and log errors
def run_command(cmd):
 s = sp.Popen(cmd, stdout=sp.PIPE, stderr=sp.PIPE)
 output, error = s.communicate()
 rc = s.returncode
 # if an error occurs, log it
 if len(error):
 synclogger('ERROR', error.rstrip())
 return rc

rsync latest backup to the standby mediation server's backup directory
def rsync_latest(latest):
 remoteHost = '@'.join([os.getenv('USER'), REMOTE_HOST])
 remotePath = ':'.join([remoteHost, BACKUPS_DIR])
 cmd = ['/usr/bin/rsync', '-a', latest, remotePath]
 rc = run_command(cmd)
 return rc

check service status and return the return code from the command
def check_service_status(service):
 cmd = ['/sbin/service', service ,'status']
 result = run_command(cmd)
 return result

Page 20 of 21

remove oldest backups if number of backups exceeds maintenance input
def maintenance(limit):
 backups = sorted(glob('/'.join([BACKUPS_DIR, '*.tgz'])), reverse=True)
 count = 0
 for i, backup in enumerate(backups):
 if i >= limit:
 os.remove(backup)
 count += 1
 return count

build dict from args
def get_opts():
 if 'python' in sys.argv[0]:
 args = sys.argv[1:]
 else:
 args = sys.argv
 if len(args) < 2:
 show_help(1)
 pargs = ['b', 'h']
 opts = {'backups': 14}
 for i, a in enumerate(args):
 a = a.strip('-')
 if a in pargs:
 if a == 'h':
 show_help()
 elif a == 'b':
 opts['backups'] = int(args[i+1])
 return opts

run backup and sync on active server
def run_backup():
 synclogger('[INFO]', 'starting ngp backup')
 latest = create_backup()
 size = str(os.stat(latest).st_size)
 synclogger('[INFO]', 'backup complete: ' + latest + ' : ' + size + ' bytes')
 synclogger('[INFO]', 'starting backup sync')
 rsync_latest(latest)
 synclogger('[INFO]', 'backup sync complete')

run maintenance
def main():

 ngp = check_service_status('ngp')

 if ngp == 0:
 run_backup()
 else:
 opts['backups'] -= 1

 synclogger('[INFO]', 'performing backup maintenance')
 removed = maintenance(opts.get('backups'))
 synclogger('[INFO]', ' '.join(['removed', str(removed), 'backups']))

Page 21 of 21

if __name__ == '__main__':

 opts = None
 try:
 opts = get_opts()
 except:
 sys.exit(1)

 main()

		Introduction

		Loss of Information During Recovery

		Database Synchronization Script

		Overview

		Workflow Diagram

		Database Synchronization Script Installation

		Mediation Server Backup Script

		Overview

		Workflow Diagram

		Mediation Server Backup Script Installation

		Failover Procedure

		Appendix B: Database Synchronization Script

		Appendix C: Mediation Server Backup Script

PolicyGuru System Enhanced Availability Guide_7212017.pdf

PolicyGuru®

Meta-Policy Controller

Enhanced Availability Guide

Page 2 of 21

Contents

Introduction .. 3

Loss of Information During Recovery.. 4

Database Synchronization Script .. 4

Overview ... 4

Workflow Diagram .. 4

Database Synchronization Script Installation ... 5

Mediation Server Backup Script .. 6

Overview ... 6

Workflow Diagram .. 7

Mediation Server Backup Script Installation ... 8

Failover Procedure .. 9

Appendix B: Database Synchronization Script .. 12

Appendix C: Mediation Server Backup Script ... 18

Page 3 of 21

PolicyGuru® System Enhanced Availability
Model
Introduction
The PolicyGuru Solution can be deployed in a distributed Enhanced Availability model to allow for rapid

system recovery in the event of active management cluster failure. In this configuration model, you

deploy two Mediation Server and Database Server pairs at separate sites as active and warm-standby

management cluster pairs. These sites can be in different locations on the same campus or in different

locations across the country or continent. Global deployments where the two locations are on different

continents are not supported.

One Mediation Server/Database Server pair is the active pair at any time to support normal operations,

while the secondary pair is in warm-standby mode, ready to be placed in the active role if normal

operations of the currently active pair are impaired. The secondary servers are powered on but are not

active at the PolicyGuru application level. The standby Database Server is regularly synchronized with

the active Database Server and the active Mediation Server configuration is regularly backed up to the

standby Mediation Server so its configuration can be quickly imported to the standby when failover is

needed.

To mitigate issues related to data integrity, loss, and potential duplication, the Mediation Server and

Database Server co-resident at a site are considered paired and are restricted to communicating with

each other; that is, the Mediation Serve at Site A only communicates with the Database Server at Site A

and is not permitted to communicate with the Database Server at Site B if the Database Server at Site A

fails. Total or partial loss of any active management cluster component may trigger the failover

procedure, in which the entire cluster is failed over to the secondary warm standby cluster. The

secondary cluster then assumes and retains the active role. The former secondary server pair, once

repaired, assumes the warm standby mode until a failover event occurs, when the roles will again be

reversed using the failover procedure on page 9.

Depending on the error condition observed, triggering the failover procedure does not necessarily mean

that PolicyGuru System operations have been disrupted. The procedure can be invoked as a

preventative measure when certain issues are observed, in addition to more serious faults.

SecureLogix has Python scripts available to perform the backup and synchronization operations on the

standby management cluster. Instructions for their installation and use are provided in this guide.

Contact SecureLogix Technical Support to obtain copies of the scripts. Their installation, function, and

use is described below.

Note: For general system backup procedures for maintaining a complete backup of all PolicyGuru

Solution components, refer to the PolicyGuru® Meta-Policy Controller Backup and Recovery Guide. This

document applies specifically to implementing the Enhanced Availability deployment model.

Page 4 of 21

Loss of Information During Recovery
The recovery procedures described in this document will not restore a PolicyGuru System to the point of

failure, but rather to the point of the last backup execution. Therefore, a system recovered with this

procedure will lose call data and any system configuration changes that occurred after the backup was

executed. SecureLogix recommends running the scripts at least daily. Administrators desiring a shorter

Recovery Point Objective should execute the scripts more frequently.

Administrators who need backup and recovery strategies that do not lose data or that minimize data

loss to the greatest extent possible will need to implement alternative backup and recovery strategies

that are beyond the scope of this document and not supported by SecureLogix.

Database Synchronization Script

Overview
A database backup and synchronization script named pgsync.py is scheduled as a cron job to run at the

same time on both the active and standby database servers. When the script runs on the active

database server, it exports the database, creates a backup tar file, and then copies the tar file to the

standby database. A copy of the backup remains on the active database server. A configurable number

of previous backups are retained on each server, with the oldest backup deleted when the configured

number is exceeded when the script runs. When the script runs on the standby database, it checks for

the presence of a new backup file. If one is found, it waits a configurable number of minutes after the

backup file stops growing (by default, 5 minutes), and then untars it, starts the psql database (not the

ngp service),imports the backup into the database, and then stops the psql database when the import

completes. It then checks to see if the number of existing backups exceeds the configured number of

backups to retain and if so, deletes the oldest backup. This process ensures that the standby database

remains synched to the last active database backup. The script determines which is the active database

and which is the standby by determining whether the ngp service is running on the system. Therefore, it

is important to ensure that the ngp service remains off on the standby database server by setting

chkconfig off.

It is recommended that the script be scheduled to run at least daily. A copy of this script can be found in

“Appendix B: Database Synchronization Script” on page 12.

Workflow Diagram
Figure 1 illustrates the workflow the script executes.

Page 5 of 21

Figure 1: Database Synchronization Script Workflow

Database Synchronization Script Installation
To install the database synchronization script

1. Log in to each database and become the postgres user:

$ sudo su – postgres

2. Create or modify the .bash_profile in the postgres home directory at /opt/ngp/pgsql-

9.3/postgres/.bash_profile:

.bash_profile

User specific environment and startup programs

LD_LIBRARY_PATH=$HOME/lib

PATH=$PATH:$HOME/bin

PGDATA=/opt/ngp/db

export PATH

export LD_LIBRARY_PATH

export PGDATA

3. Create a directory named pgbackups/backups in the postgres home directory:

$ mkdir -p ~/pgbackups/backups

Page 6 of 21

4. Copy the script to the pgbackups directory you created in the postgres home directory and make

sure it is owner executable:

$ chmod u+x ~/pgbackups/pgsync.py

5. Create ssh keys for the postgres user:

$ ssh-keygen

use defaults, no password

6. Copy the public keys from one server to the other and place them in the /opt/ngp/pgsql-

9.3//.ssh/authorized_keys file and chmod the file to 400.

7. Create a crontab entry to run at the same time on each of the 2 database servers:

$ crontab -e

0 6 * * * . $HOME/.bash_profile; /opt/ngp/pgsql-

9.3/pgbackups/pgsync.py [-j JOBS] [-t TIMEOUT] [-b BACKUPS] OTHER-

DATABASE

Where:

 -t TIMEOUT is the number of seconds for new import wait
 -j JOBS is number of jobs to spawn for pg_dump
 -b BACKUPS is the number of backups to keep
 OTHER-DATABASE is the IP address and path of the backup directory on the other database
server

To view the pgsync help file, use the following command:

pgsync [-h] [-t TIMEOUT] [-j JOBS] [-b BACKUPS] REMOTE_HOST

 -t # timeout(seconds) for new import wait
 -j # number of jobs to spawn for pg_dump
 -b # number of backups to keep
 -h this message

8. A log file is created at /pgbackups/pgsync.log when the script runs and then appended on each

subsequent run. It is recommended that you use log rotation configuration to manage the log size.

Mediation Server Backup Script

Overview
A Python script named ngpsync.py backs up the active Mediation Server configuration files and copies

them to a backup directory on the standby Mediation Server. This script is scheduled as a cron job to run

at the same time on both the active and standby Mediation Server. When the script runs on the active

Mediation Server, it creates a backup tar file of the ngp directory (excluding unnecessary files and the

system-specific files in /config/network), adds the .m2 directory (which contains Rule assets) to the tar

file, and then copies the tar file to the standby Mediation Server. A copy of the backup file remains on

Page 7 of 21

the active Mediation Server. A configurable number of previous backups are retained on each server,

with the oldest backup deleted when the configured number is exceeded when the script runs.

Unlike the database, the active Mediation Server backup is not automatically synchronized to the

standby Mediation Server. It is imported during the failover procedure in case its configuration or other

errors caused the failure. Importing the backup takes only a few minutes during the failover procedure

and you can choose which backup to import.

It is recommended that the script be scheduled to run at least daily. A copy of this script can be found in

“Appendix C: Mediation Server Backup Script” on page 18.

Workflow Diagram
Figure 2 illustrates the workflow the script executes.

Figure 2: Mediation Server Backup Script Workflow

Workflow details:

The script checks ngp service status and executes active device operations if running, or standby

device operation if not running, as outlined below:

Page 8 of 21

Active device operations:

a. tar czf ngpbackupTIMESTAMP.tgz -X exclusionsfile -C /opt ngp

Where exclusionsfile:

 jboss-as-7.2.0.Final/standalone/data

 jboss-as-7.2.0.Final/standalone/tmp

 jboss-as-7.2.0.Final/standalone/log

 config/network

 openldap/var

 log

 *.log

 *.pyc

 *.pyo

 *.gitignore

b. tar rzf ngpbackupTIMESTAMP.tgz -C /root .m2

c. rsync -a ngpbackupTIMESTAMP.tgz root@remote:/opt/ngpbackups/backups/

d. Remove oldest backup if more than the configured limit exist.

Standby device operation:

 Remove oldest backup if more than the configured limit exist.

Mediation Server Backup Script Installation
To install the Mediation Server backup script

1. Log in to each Mediation Server and become root:

$ sudo -i

2. Create the directory path /opt/ngpbackups/backups:

mkdir -p /opt/ngpbackups/backups

3. Change to the /opt/ngpbackups directory:

cd /opt/ngpbackups

4. Copy the script to /opt/ngpbackups/ngpsync.py and make sure it is owner executable:

Page 9 of 21

chmod u+x ngpsync.py

5. Ensure PermitRootLogin without-password is set in sshd configuration:

$ grep PermitRootLogin /etc/ssh/sshd_config
#PermitRootLogin no
PermitRootLogin without-password

Note: if you change the sshd configuration, you must restart or reload sshd:

6. Create ssh keys to the opposing server if none exist:

ssh-keygen

use defaults, no password

7. Copy the public keys from one server to the other and put them in the /.ssh/authorized_keys
file and chmod the file to 400.

8. Create a cron entry to run at the same time on each Mediation Server:

vi /etc/cron.d/ngpsync
0 6 * * * = every day 0600 UTC = 0100 CST
0 6 * * * root . $HOME/.bash_profile; /opt/ngpbackups/ngpsync.py

[-b BACKUPS] OTHER-MEDIATION

Where:

 -b BACKUPS is the number of backups to keep
 -OTHER-MEDIATION is the IP address and path to the backup directory on the standby
Mediation Server.

9. To view the ngpsync help file, use the following command:

ngpsync [-h] [-b BACKUPS] REMOTE_HOST

 -b # number of backups to keep
 -h this message

10. A log file is created at /opt/ngpbackups/ngpsync.log the first time the script runs and then
appended on each subsequent run. It is recommended that you use log rotation configuration to
manage the log size.

Failover Procedure
For purposes of the procedure below, the active Mediation Server (MS1) and active Database Server

(DB1) are located at Data Center A and the secondary warm-standby Mediation Server (MS2) and

Page 10 of 21

Database Server (DB2) are located at Data Center B and the database has been kept synchronized per

the Backup and Restore instructions in this document.

To fail over the active management cluster to the standby cluster

1. Stop the ngp service on the active Mediation Server (MS1) and Database Server (DB1):

service ngp stop 5

2. Prevent the ngp service on the failed servers from starting on reboot by executing the following

command on MS1 and DB1::

chkconfig ngp off

3. SSH to the standby Mediation Server.

4. Change directory to /opt/ngpbackups/backups:

$ cd /opt/ngpbackups/backups
$ ls -l
ngpbackupTIMESTAMP1.tgz
ngpbackupTIMESTAMP2.tgz

5. Restore from the selected backup:

$ tar xzf ngpbackupTIMESTAMP2.tgz -C /opt --exclude=.m2
$ tar xzf ngpbackupTIMESTAMP2.tgz -C /root --exclude=ngp

6. Start the ngp service on the secondary Database Server (DB2):

service ngp start

7. After startup completes, verify that all processes are green:

service ngp status

8. Enable chkconfig of the ngp process on DB2 to allow automatic ngp startup on system startup:

chkconfig ngp on

9. Start the ngp service on the secondary Mediation Server (MS2):

service ngp start

10. After startup completes, verify that all processes are green:

service ngp status

11. Enable chkconfig of the ngp process on MS2 to allow automatic ngp startup on system startup:
chkconfig ngp on

The former secondary server pair (MS2 and DB2) are now the active management cluster.

Page 11 of 21

12. Redirect all ENUM Servers and Metadata Probes to the now-active Mediation Server: (MS2).

a. SSH to each ENUM Server and Metadata Probe.

b. On each system, edit /opt/ngp/config/network/jboss_mediation_ip to reflect the IP

address of MS2.

c. On each ENUM Server, optionally reset the SEP policy. This is recommended if SEP policy

changes have occurred since the last time Mediation Server configuration backup and

Database backup were performed. Resetting the SEP policy will allow the ENUM Servers to

most easily sync to the current SEP Policy configured on MS2.To reset SEP Policy, issue the

following command on each ENUM server:

sqlite3 /opt/ngp/bin/enum/config.db 'update items set value = "1"

where name = "policyReset";'

d. On each system, restart the ngp service to effect the change.

service ngp stop 5

service ngp start

13. Log in to MS2 and verify functionality.

14. Perform any configuration or policy changes that were previously performed on MS1 since the last

configuration and database backup (and thus are not present on MS2).

15. Commit SEP Policy and Build and Deploy CEP Policy.

Log and call activity locally cached on the ENUM Servers and Metadata Probes during the failover

procedure is automatically uploaded when communication with the active Mediation Server is

established.

It is recommended that recovery operation be performed as soon as possible on MS1 and DB1 to restore

them to an operational state so that they can be put back into service functioning as the warm-standby

pair to support a future failover event.

Page 12 of 21

Appendix B: Database Synchronization Script
#!/opt/ngp/lib/python/bin/python

import os
import sys
import time
import shutil
import tarfile
import subprocess as sp
from glob import glob

help message
def show_help(e=0):
 print 'usage: pgsync [-h] [-t TIMEOUT] [-j JOBS] [-b BACKUPS] REMOTE_HOST'
 print
 print "\t-t #\ttimeout(seconds) for new import wait"
 print "\t-j #\tnumber of jobs to spawn for pg_dump"
 print "\t-b #\tnumber of backups to keep"
 print "\t-h\tthis message"
 print
 sys.exit(e)

try:
 REMOTE_HOST = sys.argv[-1]
except:
 show_help(1)

BASE_DIR = '/'.join([os.getenv('HOME'), 'pgbackups'])
BACKUPS_DIR = '/'.join([BASE_DIR, 'backups'])
LOG_FILE = '/'.join([BASE_DIR, 'pgsync.log'])

logging function for the pgsync process
def dumplogger(level, msg):
 timestamp = time.strftime('%Y-%m-%d %H:%M:%S')
 logmsg = ''.join([timestamp, ' pgsync: ', level, ': ', msg, '\n'])
 with open(LOG_FILE, 'a+') as log:
 log.write(logmsg)
 #print logmsg.rstrip()

return the time in seconds from start to now as a string
def get_runtime(start):
 runtime = int(time.time() - start)
 return str(runtime)

execute shell commands, return the exit-code, and log errors
def run_command(cmd):
 s = sp.Popen(cmd, stdout=sp.PIPE, stderr=sp.PIPE)
 output, error = s.communicate()
 rc = s.returncode
 # if an error occurs, log it
 if len(error):
 dumplogger('ERROR', error.rstrip())

Page 13 of 21

 return rc

check service status and return the return code from the command
def check_service_status(service):
 cmd = ['/sbin/service', service ,'status']
 result = run_command(cmd)
 return result

create the pg_dump command and execute it
def execute_pg_dump(jobs):
 dump = '.'.join(['pgbackup', time.strftime('%Y%m%d%H%M%S')])
 dumpPath = '/'.join([BACKUPS_DIR, dump])
 cmd = 'pg_dump ngp -F directory -f'.split()
 cmd.append(dumpPath)
 # set jobs number if more than 1
 if jobs > 1:
 cmd.append('-j')
 cmd.append(str(jobs))
 result = run_command(cmd)
 if result != 0:
 return result
 return dump

tarball dump directory and remove the originals
def tar_dumpdir(dump):
 zname = '.'.join([dump, 'tgz'])
 os.chdir(BACKUPS_DIR)
 tar = tarfile.open(zname, 'w:gz')
 tar.add(dump)
 tar.close()
 shutil.rmtree(dump)
 return zname

use rsync to sync backup directories
def sync_backups(zname):
 dumplogger('INFO', ': '.join(['syncing backups with', REMOTE_HOST]))
 user = os.getenv('USER')
 login = '@'.join([user, REMOTE_HOST])
 destPath = ':'.join([login, BACKUPS_DIR])
 rsync = ['rsync', '-a', zname, destPath]
 result = run_command(rsync)
 dumplogger('INFO', 'sync completed')
 return result

maintain old backups by options
def maintain_backups(limit):
 globPath = '/'.join([BACKUPS_DIR, 'pgbackup*.tgz'])
 backups = sorted(glob(globPath), reverse=True)
 removed = 0
 for i, backup in enumerate(backups):
 if i >= int(limit):
 os.remove(backup)
 removed += 1
 return removed

Page 14 of 21

wait for a new import from the active database
def wait_for_import(timeout):
 dumplogger('INFO', 'waiting ' + str(timeout) + ' seconds for new import')
 timeoutTime = time.time() + timeout
 globPath = '/'.join([BACKUPS_DIR, '*'])
 numBaksExist = len(glob(globPath))
 numBaks = numBaksExist
 while numBaksExist <= numBaks:
 if time.time() > timeoutTime:
 return 1
 time.sleep(5)
 numBaksExist = len(glob(globPath))
 return 0

start/stop DB using pg_ctl
def pgctl_db(action):
 dumplogger('INFO', ' '.join([action , 'database']))
 cmd = ['pg_ctl', action]
 for i in '-s -w -t 60 -l'.split():
 cmd.append(i)
 cmd.append(LOG_FILE)
 result = run_command(cmd)
 if result != 0:
 dumplogger('ERROR', ' '.join(['database failed to', action]))
 return result

return the file path for the latest pg dump
def get_latest_dump():
 globPath = '/'.join([BACKUPS_DIR, 'pgbackup*'])
 latest = sorted(glob(globPath), reverse=True)[0]
 return latest

wait for new import to complete its transfer
def wait_for_entire_import(zdump):
 lastSize = os.stat(zdump).st_size
 count = 0
 while count < 5:
 time.sleep(60)
 newSize = os.stat(zdump).st_size
 if newSize > lastSize:
 lastSize = newSize
 count = 0
 else:
 count += 1

unzip and expand tar of the latest backup
def decompress_backup(zdump):
 tar = tarfile.open(zdump, 'r:gz')
 tar.extractall(path=BACKUPS_DIR)
 tar.close()
 return zdump[:-4]

execute the import/pg_restore

Page 15 of 21

def import_latest_dump(dump, jobs):
 cmd = ['pg_restore', '-d', 'ngp']
 if jobs > 1:
 cmd.append('-j')
 cmd.append(str(jobs))
 cmd.append(dump)
 result = run_command(cmd)
 shutil.rmtree(dump)
 return result

drop and create the ngp database
def resetDB():
 dropcmd = ['dropdb', 'ngp']
 result = run_command(dropcmd)
 if result != 0:
 dumplogger('ERROR', 'failed to drop ngp database')
 createcmd = ['createdb','ngp']
 result = run_command(createcmd)
 if result != 0:
 dumplogger('ERROR', 'failed to create ngp database')
 sys.exit(1)

run on standby database
def run_standby(timeout, jobs):
 if wait_for_import(timeout) != 0:
 dumplogger('ERROR', 'timeout waiting for new import')
 return 1
 zdump = get_latest_dump()
 dumplogger('INFO', 'waiting for new import ' + str(zdump) + ' to complete
transfer')
 wait_for_entire_import(zdump)
 dumplogger('INFO', 'decompressing backup')
 dump = decompress_backup(zdump)
 dumplogger('INFO', 'reset ngp database')
 resetDB()
 dumplogger('INFO', 'importing ngp database from latest backup')
 result = import_latest_dump(dump, jobs)
 if result != 0:
 dumplogger('ERROR', 'latest import failed')
 return 1
 dumplogger('INFO', 'latest import succeeded')
 return 0

go through standby operations
def standby_ops(timeout, backups, jobs):
 dumplogger('INFO', 'running standby device operations')
 dbStarted = pgctl_db('start')
 if dbStarted != 0:
 return 1
 result = run_standby(timeout, jobs)
 if result == 0:
 maintain_backups(backups)
 return result

Page 16 of 21

build dict from args
def get_opts():
 if 'python' in sys.argv[0]:
 args = sys.argv[1:]
 args = sys.argv
 if len(args) % 2:
 dumplogger('ERROR', 'command not valid')
 show_help(e=1)
 pargs = ['t', 'j', 'b', 'h']
 opts = {'timeout': 3600, 'jobs': 1, 'backups': 14}
 for i, a in enumerate(args):
 a = a.strip('-')
 if a in pargs:
 if a == 'h':
 show_help()
 elif a == 't':
 opts['timeout'] = int(args[i+1])
 elif a == 'j':
 opts['jobs'] = int(args[i+1])
 elif a == 'b':
 opts['backups'] = int(args[i+1])
 return opts

main function
def main():
 try:
 opts = get_opts()
 except:
 show_help(1)

 optsstr = ', '.join([': '.join([k, str(opts.get(k))]) for k in opts])
 dumplogger('INFO', ' '. join(['starting pgsync with options', optsstr]))

 # check if NGP is running on this system
 if check_service_status('ngp') != 0:
 result = 1
 try:
 result = standby_ops(opts.get('timeout'), opts.get('backups'),
opts.get('jobs'))
 except:
 result = 1
 dumplogger('ERROR', 'standby system failed to import')
 finally:
 if pgctl_db('status') == 0:
 pgctl_db('stop')
 sys.exit(result)

 dumplogger('INFO', 'running active device operations')
 dumplogger('INFO', 'delaying start for 1 minute')
 time.sleep(60)
 dumplogger('INFO', 'starting dump of database')
 pgdump = execute_pg_dump(opts.get('jobs'))
 if type(pgdump) == int:
 sys.exit(1)

Page 17 of 21

 dumplogger('INFO', 'database dump created: ' + str(pgdump))
 dumplogger('INFO', 'tarballing dump directory')
 backup = tar_dumpdir(pgdump)
 rmbaks = maintain_backups(opts.get('backups'))
 if rmbaks > 0:
 msg = ' '.join(['maintenance removed', str(rmbaks), 'backup(s)'])
 dumplogger('INFO', msg)
 dumplogger('INFO', 'sending latest backup ' + str(backup) + ' to standby
device')
 sync = sync_backups(backup)

if __name__ == '__main__':
 try:
 main()
 except Exception, e:
 msg = ': '.join(['main failed to run successfully', e.message])
 dumplogger('ERROR', msg)
 sys.exit(1)

Page 18 of 21

Appendix C: Mediation Server Backup Script
#!/usr/bin/python

import os
import sys
import time
import tarfile
from glob import glob
import subprocess as sp

help message
def show_help(e=0):
 print 'usage: ngpsync [-h] [-b BACKUPS] REMOTE_HOST'
 print
 print "\t-b #\tnumber of backups to keep"
 print "\t-h\tthis message"
 print
 sys.exit(e)

REMOTE_HOST = sys.argv[-1]
BASE_DIR = '/opt/ngpbackups'
BACKUPS_DIR = '/'.join([BASE_DIR, 'backups'])
LOG_FILE = '/'.join([BASE_DIR, 'ngpsync.log'])
EXCLUDE_DIRS = [
 'jboss-as-7.2.0.Final/standalone/data',
 'jboss-as-7.2.0.Final/standalone/tmp',
 'jboss-as-7.2.0.Final/standalone/log',
 'config/network',
 'openldap/var',
 'log'
]
EXCLUDE_FILES = [
 '.log',
 '.gitignore',
 '.pyc',
 '.pyo'
]

logging function for the ngp sync process
def synclogger(level, msg):
 timestamp = time.strftime('%Y-%m-%d %H:%M:%S')
 logmsg = ''.join([timestamp, ' ngpsync: ', level, ': ', msg, '\n'])
 with open(LOG_FILE, 'a+') as log:
 log.write(logmsg)
 #print logmsg.rstrip()

directory match exclusions
def exclude_dirs(filepath):
 for i in EXCLUDE_DIRS:
 end = len(i)
 if filepath[:end] == i:

Page 19 of 21

 return True
 return False

file match exclusions
def exclude_files(filename):
 for i in EXCLUDE_FILES:
 begin = 0 - len(i)
 if filename[begin:] == i:
 return True
 return False

filter out excluded directories and files
def exclusions(filename):
 filename = filename[4:]
 if any((exclude_dirs(filename), exclude_files(filename))):
 return True
 return False

tarball the /opt/ngp directory into BASE_DIR
def create_backup():
 os.chdir('/opt')
 timestamp = time.strftime('%Y%m%d%H%M%S')
 backupName = ''.join([BACKUPS_DIR, '/ngpbackup', timestamp, '.tgz'])
 backup = tarfile.open(backupName, 'w:gz')
 backup.add('ngp', exclude=exclusions)
 os.chdir('/root')
 backup.add('.m2')
 backup.close()
 os.chdir(BASE_DIR)
 return backup.name

execute shell commands, return the exit-code, and log errors
def run_command(cmd):
 s = sp.Popen(cmd, stdout=sp.PIPE, stderr=sp.PIPE)
 output, error = s.communicate()
 rc = s.returncode
 # if an error occurs, log it
 if len(error):
 synclogger('ERROR', error.rstrip())
 return rc

rsync latest backup to the standby mediation server's backup directory
def rsync_latest(latest):
 remoteHost = '@'.join([os.getenv('USER'), REMOTE_HOST])
 remotePath = ':'.join([remoteHost, BACKUPS_DIR])
 cmd = ['/usr/bin/rsync', '-a', latest, remotePath]
 rc = run_command(cmd)
 return rc

check service status and return the return code from the command
def check_service_status(service):
 cmd = ['/sbin/service', service ,'status']
 result = run_command(cmd)
 return result

Page 20 of 21

remove oldest backups if number of backups exceeds maintenance input
def maintenance(limit):
 backups = sorted(glob('/'.join([BACKUPS_DIR, '*.tgz'])), reverse=True)
 count = 0
 for i, backup in enumerate(backups):
 if i >= limit:
 os.remove(backup)
 count += 1
 return count

build dict from args
def get_opts():
 if 'python' in sys.argv[0]:
 args = sys.argv[1:]
 else:
 args = sys.argv
 if len(args) < 2:
 show_help(1)
 pargs = ['b', 'h']
 opts = {'backups': 14}
 for i, a in enumerate(args):
 a = a.strip('-')
 if a in pargs:
 if a == 'h':
 show_help()
 elif a == 'b':
 opts['backups'] = int(args[i+1])
 return opts

run backup and sync on active server
def run_backup():
 synclogger('[INFO]', 'starting ngp backup')
 latest = create_backup()
 size = str(os.stat(latest).st_size)
 synclogger('[INFO]', 'backup complete: ' + latest + ' : ' + size + ' bytes')
 synclogger('[INFO]', 'starting backup sync')
 rsync_latest(latest)
 synclogger('[INFO]', 'backup sync complete')

run maintenance
def main():

 ngp = check_service_status('ngp')

 if ngp == 0:
 run_backup()
 else:
 opts['backups'] -= 1

 synclogger('[INFO]', 'performing backup maintenance')
 removed = maintenance(opts.get('backups'))
 synclogger('[INFO]', ' '.join(['removed', str(removed), 'backups']))

Page 21 of 21

if __name__ == '__main__':

 opts = None
 try:
 opts = get_opts()
 except:
 sys.exit(1)

 main()

		Introduction

		Loss of Information During Recovery

		Database Synchronization Script

		Overview

		Workflow Diagram

		Database Synchronization Script Installation

		Mediation Server Backup Script

		Overview

		Workflow Diagram

		Mediation Server Backup Script Installation

		Failover Procedure

		Appendix B: Database Synchronization Script

		Appendix C: Mediation Server Backup Script

image1.tif
G Securelogix

image2.emf
PolicyGuru System Enhanced Availability Guide_7212017.pdf

